Joint Graph Embedding and Alignment with Spectral Pivot

Paris A. Karakasis*, Aritra Konar*, and Nicholas D. Sidiropoulos*

* Department of ECE University of Virginia USA

Table of Contents

Introduction

Problem Formulation

Algorithmic Approach

Experimental Evaluation

Problem Formulation

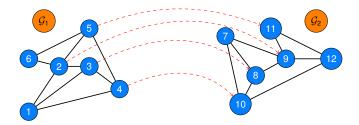
Algorithmic Approach

Experimental Evaluation

Graph Alignment

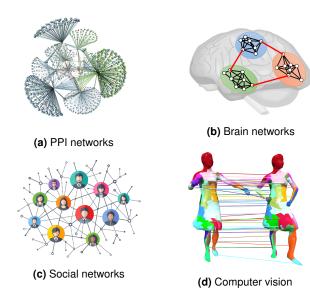
• Given $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $\mathcal{G}_2 = (\mathcal{V}_2, \mathcal{E}_2)$, find a bijection

 $f: \mathcal{V}_1 \to \mathcal{V}_2$



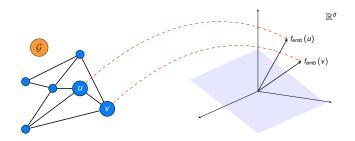
- Extensions: Directed & weighted graphs, labeled or attributed nodes, etc...
- Related problems: Subgraph matching, link prediction, and others...

Graph Alignment: Applications



Graph & Node Embeddings

• Find mappings of nodes to low-dimensional vector spaces



- Which mappings are useful?
- Graph Alignment: match nodes with similar embeddings!

Related Work

- \bullet Graph alignment as a QP problems \Rightarrow solved exactly or approximately
- \bullet Spectral methods \Rightarrow use the eigenvectors of the adjacency matrix
 - Umeyama's method, 1988
 - IsoRank, Singh et al. 2007
 - EigenAlign (EA) and LowRankAlign (LRA), Feizi et al. 2019
- Using node embeddings:
 - REGAL, Heimann et al. 2018
 - CONE-Align, Chencone et al. 2020
 - Gromov-Wasserstein discrepancy based learning, Xu et al. 2019

Problem Formulation

Algorithmic Approach

Experimental Evaluation

Problem Formulation of Graph Alignment

- Let \mathcal{P}^n be the set of all $n \times n$ permutation matrices
- In terms of adjacency matrices A₁ and A₂

$$\min_{\mathbf{P} \in \mathcal{P}^n} \|\mathbf{A}_1 - \mathbf{P} \mathbf{A}_2 \mathbf{P}^T\|_F^2 \Rightarrow \text{Quadratic Assignment Problem (QAP)}$$
$$\Rightarrow \text{NP-hard}$$

 \bullet In terms of node embeddings \textbf{E}_1 and \textbf{E}_2

$$\begin{split} \min_{\mathbf{P}\in\mathcal{P}^n} \|\mathbf{E}_1 - \mathbf{P}\mathbf{E}_2\|_F^2 \Rightarrow \text{Linear Assignment Problem (LAP)} \\ \Rightarrow \text{Hungarian algorithm } \mathcal{O}\left(n^3\right) \end{split}$$

Using node embeddings for graph alignment has great potential!

Proposed Formulation for Graph Alignment

• Most approaches:

Fix the nodes embeddings (E_1 and E_2) and solve the resulting LAP

- Proposed approach:
 - Consider embeddings of the form

$$\mathbf{E}_i = \mathbf{A}_i \mathbf{Q}_i \in \mathbf{R}^{n \times d}$$
, for $i = 1, 2$

- Fix $\mathbf{E}_1 = \mathbf{A}_1 \mathbf{Q}_1 = d$ major principal components
- Learn jointly E2 and P by solving

$$\min_{\mathbf{P}, \mathbf{Q}_{2}} \|\mathbf{E}_{1} - \mathbf{P}\mathbf{A}_{2}\mathbf{Q}_{2}\|_{F}^{2} + \overbrace{\lambda \|\mathbf{Q}_{1} - \mathbf{P}\mathbf{Q}_{2}\|_{F}^{2}}^{\text{isomorphic case} \Rightarrow \mathbf{Q}_{1} = \mathbf{P}\mathbf{Q}_{2}},$$
s.t.
$$\underbrace{\mathbf{P} \geq \mathbf{0}, \ \mathbf{1}_{n}^{T}\mathbf{P} = \mathbf{1}_{n}^{T},}_{\text{left stochasticity}} + \underbrace{\mathbf{P}^{T}\mathbf{P} = \mathbf{P}\mathbf{P}^{T} = \mathbf{I}_{n}}_{\text{orthonormality}} (\equiv \mathbf{P} \in \mathcal{P}^{n})$$

$$(1)$$

Problem Formulation

Algorithmic Approach

Experimental Evaluation

Algorithmic Approach I

- Problem (1) is non-convex! The permutation constraints are tough!
- We propose the following "penalty" formulation

$$\min_{\mathbf{U}, \mathbf{W}, \mathbf{Q}_{2}} \|\mathbf{E}_{1} - \mathbf{U}\mathbf{A}_{2}\mathbf{Q}_{2}\|_{F}^{2} + \lambda \|\mathbf{Q}_{1} - \mathbf{U}\mathbf{Q}_{2}\|_{F}^{2} + \rho \|\mathbf{U} - \mathbf{W}\|_{F}^{2} , \qquad (2)$$

s.t. $\mathbf{W} \ge \mathbf{0}, \ \mathbf{1}_{n}^{T}\mathbf{W} = \mathbf{1}_{n}^{T}, \ \mathbf{U}^{T}\mathbf{U} = \mathbf{U}\mathbf{U}^{T} = \mathbf{I}_{n},$

Block-separable problem ⇒ Alternating Optimization!

• Given \mathbf{U}^k , \mathbf{W}^k , \mathbf{Q}_2^k , at the *k*-th iteration, we solve in a cyclic fashion:

$$\begin{split} \mathbf{Q}_{2}^{k+1} &= \underset{\mathbf{Q}_{2}}{\operatorname{argmin}} \left\| \mathbf{E}_{1} - \mathbf{U}^{k} \mathbf{A}_{2} \mathbf{Q}_{2} \right\|_{F}^{2} + \lambda \left\| \mathbf{Q}_{1} - \mathbf{U}^{k} \mathbf{Q}_{2} \right\|_{F}^{2}, \\ \mathbf{W}^{k+1} &= \underset{\mathbf{W}}{\operatorname{argmin}} \left\| \mathbf{W} - \mathbf{U}^{k} \right\|_{F}^{2}, \text{ s.t. } \mathbf{W} \geq \mathbf{0}, \quad \mathbf{1}_{n}^{T} \mathbf{W} = \mathbf{1}_{n}^{T}, \\ \mathbf{U}^{k+1} &\in \underset{\mathbf{U}: \mathbf{U}^{T} \mathbf{U} = \mathbf{U} \mathbf{U}^{T} = \mathbf{I}_{n}}{\operatorname{argmin}} \left\| \mathbf{E}_{1} - \mathbf{U} \mathbf{A}_{2} \mathbf{Q}_{2}^{k+1} \right\|_{F}^{2} + \lambda \left\| \mathbf{Q}_{1} - \mathbf{U} \mathbf{Q}_{2}^{k+1} \right\|_{F}^{2} + \rho \left\| \mathbf{U} - \mathbf{W}^{k+1} \right\|_{F}^{2} \end{split}$$

Algorithmic Approach II

- Convergence guarantees:
 - i) the algorithm monotonically reduces the objective of (2)
 - ii) every limit point of the proposed algorithm is a stationary point of (2)
- Algorithmic Complexity:
 - a) Updating Q2: A special unconstrained least squares problem
 - Cholesky decomposition of the Gram matrix $(n^3/3 \text{ flops})$ only once!
 - Solving the linear system via forward-backward substitution $O(dn^2)$
 - b) Updating W: Euclidean projection of U^k onto left stochastic matrices O(n² log n)
 - c) Updating **U**: An Orthogonal Procrustes problem $O(n^3)$

Overall complexity: $O(n^3)$

Problem Formulation

Algorithmic Approach

Experimental Evaluation

Experimental Evaluation

- Comparison against well known methods on real world graphs
 - Umeyama's Method, 1988: A spectral-embedding based method
 - IsoRank, Singh et al. 2017: A spectral method based on random walks
 - Low-Rank Align, Feizi et al. 2019: A spectral method for the QAP
 - CONE-Align, Chencone et al. 2020: Joint embedding and alignment
- Datasets: Real-world datasets from the KONECT Project and SNAP¹

Network	number of vertices (n)	number of edges (m)	network type
C. ELEGANS	277	2,105	Interactome
ARENAS-EMAIL	1,133	5,451	Communications
POLBLOG	1,224	16,714	Social
AIRPORTS	1,574	17,215	Infrastructure
A. THALIANA	2,082	4,145	Interactome
JAPANESE BOOK	3,177	7,998	Word Adjacency
HOMOSAPIENS	3,890	38,292	Interactome
CA-GRQC	5,242	14,490	Co-authorship

¹Kunegis, 2013 & Leskovec and Krevl, 2014, respectively

Experimental Setup I

- In our experiments we consider:
 - i) a simple, undirected, unweighted graph as target graph (\mathcal{G}_1)
 - ii) a "noisy" and permuted version of \mathcal{G}_1 as query graph (\mathcal{G}_2)
 - iii) $\mathbb E\left[\text{extra edges in }\mathcal G_2\right]$ between 1% and 20% of $\#\mathcal V_1$
 - iv) for each noise-level, averages over 20 Monte-Carlo runs
- Evaluation Metric:

 $\label{eq:Edge Correctness} \text{Edge Correctness} \ := \ \frac{\text{number of edge overlaps induced by the algorithm}}{\text{the number of edges in } \mathcal{G}_1} \le 1$

Experimental Setup II

- Initialization: we use the output produced by CONE-Align
- Convergence criterion:

$$\frac{\|\mathbf{u}^{k}-\mathbf{u}^{k-1}\|_{F}}{\sqrt{n}} \leq 10^{(-2)} \text{ or number of iterations exceeds } K_{max} = 60$$

- Choice of parameters:
 - i) the embedding dimension, $d \Rightarrow \nearrow d$ linearly with $n \to \nearrow$ performance
 - ii) the level of non-isomorphism btw \mathcal{G}_1 & \mathcal{G}_2 , $\lambda \ge 0 \Rightarrow$ trial-and-error
 - iii) the penalty parameter ρ (violation of $\mathbf{U} = \mathbf{W}$) $\Rightarrow \rho \in [0.1, 0.3]$

Results I

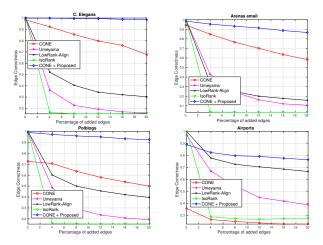


Figure: Edge correctness vs. noise level across networks. For each value of noise level (p_e), 20 different realizations of the graphs G_2 , with a certain percentage of additional edges and under a different and random permutation, were generated. The number of additional edges varied from 0 to 20% of the total number of edges of the fixed graph G_1 .

Results II

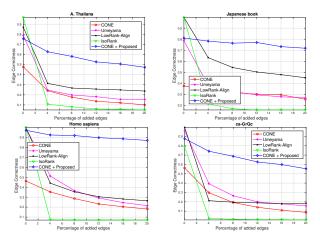


Figure: Edge correctness vs. noise level across networks. For each value of noise level (p_e), 20 different realizations of the graphs G_2 , with a certain percentage of additional edges and under a different and random permutation, were generated. The number of additional edges varied from 0 to 20% of the total number of edges of the fixed graph G_1 .

Results III

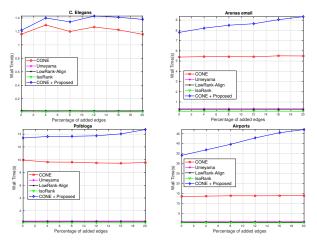


Figure: Wall time (in seconds) vs. noise level for different networks.

Results IV

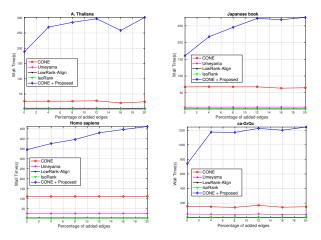


Figure: Wall time (in seconds) vs. noise level for different networks.

Problem Formulation

Algorithmic Approach

Experimental Evaluation

- In this work, we:
 - (i) proposed a novel formulation of graph alignment
 - (ii) developed an optimization algorithm
 - (iii) compared it against the state-of-the-art
- Our results indicate:
 - (i) we achieve much higher alignment accuracy
 - (ii) even in challenging problem instances
 - (iii) there is a lot of room for improvement!
- Future work:
 - (i) more efficient/scalable methods for the proposed formulation
 - (ii) testing the embeddings for other tasks

Thank you!