Iterative graph alignment via supermodular approximation

Aritra Konar and Nicholas D. Sidiropoulos

Department of Electrical and Computer Engineering

IEEE International Conference on Data Mining Beijing, China November 9, 2019

Graph Matching

Problem: Find correspondence mapping between vertex sets that best preserves adjacency relations

Applications

Graph Matching

U Vectorization: Define $\mathbf{x} = \text{vec}(\mathbf{P}), n = n_A n_B$

Computational Challenges

Graph Matching

Corresponds to a quadratic assignment problem [Koopmans-Beckmann 57]

□ Theoretical: [Sahni-Gonzalez 76]

- > NP-hard (contains subgraph isomorphism as a special case)
- > NP-hard to approximate within constant-factor of optimum

□ Practical:

- \blacktriangleright Space and time complexity of computing + storing $\mathbf{A}\otimes\mathbf{B}$
- Requires quadratic memory in the size of the graphs

Prior Art

Is there a more principled approach that works entirely in the combinatorial domain?

Represent discrete function as a set function

Discrete problem = subset selection problem

□ Final formulation:

$$\max_{\mathcal{S}\in\mathcal{I}_A\cap\mathcal{I}_B}\left\{F(\mathcal{S}):=\mathbf{1}_{\mathcal{S}}^T(\mathbf{A}\otimes\mathbf{B})\mathbf{1}_{\mathcal{S}}\right\}$$

where
$$\mathcal{I}_A = \{ \mathcal{S} \subset \mathcal{E}_C, |\mathcal{S} \cap \delta(i)| \le 1, \forall i \in \mathcal{V}_A \},\$$

 $\mathcal{I}_B = \{ \mathcal{S} \subset \mathcal{E}_C, |\mathcal{S} \cap \delta(j)| \le 1, \forall j \in \mathcal{V}_B \}$

□ Conventional wisdom:

Constraints are "harder" to handle compared to the objective

□ Our perspective:

- The opposite is true
- ► Constraints: $S \in I_A \cap I_B \Leftrightarrow$ matroid intersection

A closer look: objective function

- □ Key fact: F(S) is a monotone, supermodular function [Konar-Sidiropoulos 19]
- $\Box \quad \text{Monotonicity:} \ \mathcal{A} \subseteq \mathcal{B} \implies F(\mathcal{A}) \leq F(\mathcal{B})$
- $\Box \quad \text{Supermodularity: For all } \mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{E}_C \setminus \{e\}$

An improving returns property, reminiscent of convexity

Graph Matching

□ Key Result:

Graph matching is a supermodular maximization problem subject to matroid intersection constraints!

□ Take-away:

Constraints are manageable, but objective function is difficult to maximize

Can we exploit supermodularity for approximate maximization?

Majorization Minimization

□ Main Idea:

Iteratively maximize sequence of global lower bounds on reward

Does the idea carry over to the discrete domain?

Discrete Majorization Minimization

Key fact: Supermodular functions possess (discrete) subgradients! [Jegelka-Bilmes 11]

 $\partial_F(\mathcal{X}) = \{ \mathbf{g} \in \mathbb{R}^n \mid F(\mathcal{Y}) \ge F(\mathcal{X}) + G(\mathcal{Y}) - G(\mathcal{X}), \forall \mathcal{Y} \subseteq \mathcal{E}_C \}$

where $G(\mathcal{Y}) = \mathbf{g}^T \mathbf{1}_{\mathcal{Y}} = \sum_{i \in \mathcal{Y}} g_i$

□ Construction of global lower bound: [Bai-Bilmes 18]

 \succ Pick any $\mathbf{g} \in \partial_F(\mathcal{X})$, and define

$$m_{\mathcal{X}}(\mathcal{Y}) := F(\mathcal{X}) + G(\mathcal{Y}) - G(\mathcal{X})$$

> Furthermore:

$$m_{\mathcal{X}}(\mathcal{X}) := F(\mathcal{X}) \text{ and } m_{\mathcal{X}}(\mathcal{Y}) \leq F(\mathcal{Y}), \forall \ \mathcal{Y} \subseteq \mathcal{E}_C$$

A global lower bound on the reward function!

 $\label{eq:simplification: For any given $\mathcal{S} \subseteq \mathcal{M}$}$

Option I:
$$g_1(j) = \begin{cases} 2 \deg_B(\pi(i)) \deg_A(i), & \forall j \in S \\ 2 \mathbf{b}_{\pi(i)}^T \mathbf{P} \mathbf{a}_i, & \forall j \notin S \end{cases}$$

OR

Option II:
$$g_2(j) = \begin{cases} 2\mathbf{b}_{\pi(i)}^T \mathbf{P} \mathbf{a}_i, & \forall \ j \in \mathcal{S} \\ 0, & \forall \ j \notin \mathcal{S} \end{cases}$$

- No Kronecker products required!
- In practice, use Option II (linear memory in size of input graph)

Discrete Majorization Minimization

□ The algorithm:

- ▶ Initialization: $S^{(0)} \in M$
- ▶ Iterate: $k = \{0, 1, 2 \cdots \}$
 - Obtain subgradient $\mathbf{g}^{(k)} \in \partial_F(\mathcal{S}^{(k)})$
 - Compute update

Linear assignment / maximum weight bipartite matching problem

Repeat

Discrete Majorization Minimization

□ Features:

Exact

Inexact

- Purely combinatorial solves a few weighted bipartite matching problems
- Guaranteed to improve the reward function:

 $F(\mathcal{S}^{(0)}) \leq F(\mathcal{S}^{(1)}) \leq F(\mathcal{S}^{(2)}) \leq F(\mathcal{S}^{(3)}) \leq \cdots$

Guaranteed to maintain feasibility:

 $\mathcal{S}^{(k)} \in \mathcal{M}, \forall k \in \{0, 1, 2, \cdots\}$

- Complexity: Dominated by cost of solving weighted bipartite matching problem
 - (For $n_A = n_B$) Hungarian algorithm [Kuhn-Munkres 58] / Jonker-Volgenant algorithm [Jonker-Volgenant, 87]
 - (For $n_A < n_B$) Network-Simplex algorithm [Orlin 97]
 - Greedy matching
 - Sinkhorn Matrix Balancing [Cuturi 13, Sinkhorn 67]

Experiments

□ Setup:

Given real world graph A, generate noisy graph B

- where $\, {f Q} \,$ is a random Erdos-Renyi noise graph

Benchmarks:

- Umeyama's Method: full EVD of each adjacency [Umeyama 1988]
- Eigen-Align (EA): top eigen-vector of each adjancency [Feizi et. al 2016]
- IsoRank: Random-walk based [Singh et. al 2008]
- Feature Engineering (FE): local + egonet features [Berlingerio et. al 2012]
- Apply greedy matching on output of each algorithm to obtain final correspondence mapping

Experiments

□ Implementation:

- Initialization: Use output of FE
- Regularization: Use node-level similarity matrix of FE
- > Inner-solver:
 - Exact: Jonker-Volgenant algorithm
 - Inexact: 5 iterations of Sinkhorn Matrix balancing + Greedy

Evaluation Metrics:

- Edge correctness
- Relative degree difference (by degree)

$$rdd(i,\pi(i)) = \left(1 + \frac{|\deg(i) - \deg(\pi(i))|}{(\deg(i) + \deg(\pi(i)))/2}\right)^{-1}$$

➢ Runtime

A. Thaliana (PPI): n = 2,082, m = 4,145

15 % accuracy improvement over FE, MM-Inexact best performance overall

A. Thaliana (PPI): n = 2,082, m = 4,145

Significant improvement in RDD alignment scores for bottom 5% nodes

Conclusions

Graph Matching through the lens of supermodularity:

- Maximizing a supermodular function subject to matroid intersection constraints
- Combinatorial local search based on discrete MM
 - Solve a sequence of bipartite matching problems
 - Does not require computing expensive Kronecker products
 - FE + Inexact version yields state-of-the-art performance on realworld data

□ Future Work:

- Instance specific approximation guarantees
- Joint embedding + matching

Thank you!

A closer look: the constraints

 $\Box \text{ Interpretation: } \mathcal{S} \in \mathcal{I}_A \cap \mathcal{I}_B$

 \succ Set \mathcal{I}_A :

- For every source vertex, only one outgoing edge can be selected
- A partition matroid on the edges of \mathcal{G}_C
- \succ Set \mathcal{I}_B :
 - For every target vertex, only one incoming edge can be selected
 - Also a partition matroid on the edges of \mathcal{G}_C

Matching sets equivalent to intersection of partition matroids

Exact or Inexact?

A. Thaliana (PPI): n = 2082, m = 4145

Inexact: 5 % performance loss, 10x speedup, approx. convergence in 1 iteration

Setup

A. Thaliana (PPI): n = 2,082, m = 4,145

Stanford-CS (web): n = 2,759, m = 10,270

10 % accuracy improvement over FE, MM-Inexact best performance overall

Stanford-CS (web): n = 2,759, m = 10,270

Significant improvement in RDD alignment scores of bottom 5% nodes

Ca-GrQc (co-authorship): n = 5,242, m = 14,490

10 % accuracy improvement over FE, MM-Inexact best performance overall

Ca-GrQc (co-authorship): n = 5,242, m = 14,490

Significant improvement in RDD alignment scores of bottom 5% nodes