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Graph Matching

 Problem: Find correspondence mapping between vertex sets that 

best preserves adjacency relations
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Minimize edge disagreements

Correspondence mappings



Applications
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Network de-anonymization Ontology alignmentElectronic circuit design 

Scene matching



Graph Matching

 Vectorization: Define                                 
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Set of maximum cardinality matchings in

Maximize edge overlap

source

target



Computational Challenges

 Graph Matching

 Corresponds to a quadratic assignment problem [Koopmans-

Beckmann 57]

 Theoretical: [Sahni-Gonzalez 76]

 NP-hard (contains subgraph isomorphism as a special case)

 NP-hard to approximate within constant-factor of optimum 

 Practical:

 Space and time complexity of computing + storing 

 Requires quadratic memory in the size of the graphs
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Prior Art
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Linear programming relaxation 

[Sherali-Adams 13]

Message passing [Bayati et al. 10]Branch and bound [Bazara 83]

Continuous domain

Semidefinite programming relaxation 

[Sherali-Adams 13]

Spectral methods: [Umeyama 1988, Singh et al. 09, Feizi et al. 19]

Discrete domain



Problem Reformulation

 Is there a more principled approach that works entirely in the 

combinatorial domain?

 Represent discrete function as a set function

 Discrete problem = subset selection problem
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Problem Reformulation

 Final formulation: 

 Conventional wisdom: 

 Constraints are “harder” to handle compared to the objective

 Our perspective:

 The opposite is true

 Constraints:                           matroid intersection
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where



A closer look: objective function

 Key fact: is a monotone, supermodular function [Konar-

Sidiropoulos 19]

 Monotonicity:

 Supermodularity: For all
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An improving returns property, reminiscent of convexity 



Graph Matching

 Key Result:

 Graph matching is a supermodular maximization problem subject 

to matroid intersection constraints!

 Take-away:

 Constraints are manageable, but objective function is difficult to 

maximize

 Can we exploit supermodularity for approximate 

maximization?
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Majorization Minimization

 Main Idea:

 Iteratively maximize sequence of global lower bounds on reward 
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Does the idea carry over to the discrete domain?



Discrete Majorization Minimization

 Key fact: Supermodular functions possess (discrete) 

subgradients! [Jegelka-Bilmes 11]

 Construction of global lower bound: [Bai-Bilmes 18]

 Pick any                  , and define

 Furthermore:
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where 

and 

A global lower bound on the reward function!



Discrete Majorization Minimization

 Simplification: For any given 

 No Kronecker products required!

 In practice, use Option II (linear memory in size of input graph)
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OR

Option I:

Option II:



Discrete Majorization Minimization

 The algorithm:

 Initialization:

 Iterate:

 Obtain subgradient

 Compute update

 Repeat
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Linear assignment / maximum weight bipartite matching problem



Discrete Majorization Minimization

 Features:

 Purely combinatorial - solves a few weighted bipartite matching 

problems

 Guaranteed to improve the reward function:

 Guaranteed to maintain feasibility:

 Complexity: Dominated by cost of solving weighted bipartite 

matching problem

 (For             ) Hungarian algorithm [Kuhn-Munkres 58] / Jonker-Volgenant

algorithm [Jonker-Volgenant, 87]

 (For             ) Network-Simplex algorithm [Orlin 97]

 Greedy matching 

 Sinkhorn Matrix Balancing [Cuturi 13, Sinkhorn 67]
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Exact

Inexact



Experiments

 Setup:

 Given real world graph    , generate noisy graph   

 where       is a random Erdos-Renyi noise graph

 Benchmarks:
 Umeyama’s Method: full EVD of each adjacency [Umeyama 1988]

 Eigen-Align (EA): top eigen-vector of each adjancency [Feizi et. al 2016]

 IsoRank: Random-walk based [Singh et. al 2008] 

 Feature Engineering (FE): local + egonet features [Berlingerio et. al 2012]

 Apply greedy matching on output of each algorithm to obtain final 

correspondence mapping
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Add extra edgesGround-truth correspondence



Experiments

 Implementation:

 Initialization: Use output of FE

 Regularization: Use node-level similarity matrix of FE

 Inner-solver:

 Exact: Jonker-Volgenant algorithm 

 Inexact: 5 iterations of Sinkhorn Matrix balancing + Greedy

 Evaluation Metrics:

 Edge correctness

 Relative degree difference (by degree)

 Runtime
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Results
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A. Thaliana (PPI): n = 2,082, m = 4,145

15 % accuracy improvement over FE, MM-Inexact best performance overall



Results
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Significant improvement in RDD alignment scores for bottom 5% nodes

A. Thaliana (PPI): n = 2,082, m = 4,145



Conclusions

 Graph Matching through the lens of supermodularity:

 Maximizing a supermodular function subject to matroid

intersection constraints

 Combinatorial local search based on discrete MM

 Solve a sequence of bipartite matching problems

 Does not require computing expensive Kronecker products

 FE + Inexact version yields state-of-the-art performance on real-

world data

 Future Work:

 Instance specific approximation guarantees

 Joint embedding + matching
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Thank you!



A closer look: the constraints

 Interpretation:

 Set      :

 For every source vertex, only one outgoing edge can be selected  

 A partition matroid on the edges of 

 Set      : 

 For every target vertex, only one incoming edge can be selected 

 Also a partition matroid on the edges of 

 Matching sets equivalent to intersection of partition matroids
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source

target



Exact or Inexact?

23

A. Thaliana (PPI): n = 2082, m = 4145

Inexact: 5 % performance loss, 10x speedup, approx. convergence in 1 iteration 



Setup
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A. Thaliana (PPI): n = 2,082, m = 4,145



Results
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Stanford-CS (web): n = 2,759, m = 10,270

10 % accuracy improvement over FE, MM-Inexact best performance overall



Results
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Significant improvement in RDD alignment scores of bottom 5% nodes

Stanford-CS (web): n = 2,759, m = 10,270



Results
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Ca-GrQc (co-authorship): n = 5,242, m = 14,490

10 % accuracy improvement over FE, MM-Inexact best performance overall



Results

28

Significant improvement in RDD alignment scores of bottom 5% nodes

Ca-GrQc (co-authorship): n = 5,242, m = 14,490


