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Nonconvex QCQPs

 General Form: 

 NP-Hard (in general)

 Ubiquitous in wireless communications, signal processing, 

power systems etc.

 Multicast beamforming [Sidiropoulos et al. 2006]

 Phase Retrieval [Fienup 1978]

 Optimal Power Flow [Carpentier 1962]

 Power System State Estimation [Schweppe et al. 1970]
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Nonconvex QCQPs

 Existing approaches

 Semidefinite Relaxation [Wolkowicz 2000, Luo et al. 2010]

 Solve rank relaxed SDP and use post-processing step (deterministic 

or randomized) to generate feasible solution; fails in most instances

 Successive Convex Approximation [Beck et al. 2010, Scutari et al. 2014]

 Approximate problem via sequence of convex problems; guaranteed 

convergence to stationary points 

 Requires feasible point for initialization; non-trivial to determine

 Feasible Point Pursuit [Mehanna et al. 2015, Kanatsoulis et al. 2015]

 Use SCA + slack variables to approximate feasibility problem

 Works with any choice of initialization; empirically performs very well

 Consensus ADMM [Huang et al. 2016]

 Decompose problem into multiple parallel QCQP-1 subproblems at 

every iteration; QCQP-1 is optimally solvable

 Enforce consensus among solutions to determine global variable

3



Nonconvex QCQPs

 Drawbacks

 FPP-SCA and C-ADMM require computing eigendecompositions;  

additionally FPP-SCA requires storing the positive and negative 

definite parts in memory

 FPP-SCA requires solving a conic programming problem at every 

iteration incurring complexity 

 C-ADMM is very memory intensive, one local variable created for 

every constraint

 Computationally demanding/memory intensive

 Cannot be applied to large-scale problems

 We propose a FOM based approach for feasibility pursuit with 

low computational and memory requirements

 Works well in practice

4



Problem Statement

 Exact Penalty Formulation

 Equivalently, in smooth form

 FPP-SCA corresponds to performing SCA on above problem

 Use FOMs on original formulation instead?

 Non-differentiable!
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Problem Formulation

 Inequality constraints:

 Define

 Smooth surrogate: [Nesterov 2004]

 Quality of approximation: [Nesterov 2004]

 Equality constraints:

 Define

 Overall formulation: 
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Overview of FOMs

 Minimizing average of finite sums via FOMs:

 Gradient Descent (GD): [Cauchy 1847]

 Stochastic Gradient Descent (SGD): [Robbins and Munro 1953]

 Sample                 uniformly at random (with replacement)

 Stochastic Variance Reduced Gradient (SVRG): [Johnson et al. 2014]

 Define stage    and inner stochastic iterations
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Convergence results for FOMs

 Convergence to stationary points

 Assumption: Lipschitz continuity of         and            

 GD [Nesterov 2004, Ghadimi et al. 2016]

 SGD [Ghadimi and Lan 2013]

 SVRG [Reddi et al. 2016]

 Convergence to local minima

 Assumption:         satisfies the strict-saddle property [Ge et al. 2015]

 GD (w/ random initialization) [Lee et al. 2016]

 SGD [Ge et al. 2015]

 Convergence to global minima (at linear rate!)

 Assumption:         satisfies the Polyak-Lojasiewicz (PL) inequality

 GD and SGD [Karimi et al. 2016]
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For our problem……

 Unconstrained Case 

 Not applicable in general;             is a quartic polynomial

 Constrained Case

 Requires step-size 

 Too small to work well in practice

 Stationary point not guaranteed to be feasible

 Heuristic Choices

 Diminishing:

 Polynomial:

 Generalization of inverse-t step schedule for SGD

 N-LMS:

 Simple counter-example where this works for minimizing a quartic 

function and all other reasonable step-sizes fail [Re et al. 2015]
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Synthetic Experiments

 Feasibility for random systems of quadratic inequalities

 Generate nonconvex quadratic feasibility problem such that 

there exists a feasible solution     with unit norm 

 Generate                from i.i.d. standard normal distribution

 Generate

 Algorithmic Setup:

 Set

 Initialize GD, SVRG and SGD from the same randomly 

generated unit-vector (no restarts)

 GD, SVRG and SGD have a total gradient budget of            

gradients 

 Polynomial step-size rule for GD and SVRG; diminishing step-

size rule for SGD

 Feasibility declared if 
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Illustrative Example

N = 200, M = 1000, single instance
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Timing: SGD – 17 secs, SVRG – 27 secs, GD – 83 secs



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 50 variables, varying M, 1000 instances for each value of M



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 100 variables, varying M, 1000 instances for each value of M



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 200 variables, varying M, 1000 instances for each value of M



Synthetic Experiments (contd…)

 Solving random systems of quadratic equalities

 Generate               from spiked Gaussian ensemble

 A special case of the Matrix Sensing problem [Bhojanapalli et al. 2015]

 If                , then RIP satisfied with high probability

 Strict-saddle property satisfied; plus no spurious local minima 

exist (i.e., all local minima are also global minima)

 GD and SGD converge to global minima!                              

 Algorithmic Setup:

 Set

 Initialize GD with spectral initialization plus constant step-size; 

guaranteed (local) linear convergence rate [Tu et al. 2015]

 Initialize SGD with random initialization plus normalized step-

size rule; guaranteed convergence in polynomial-time [Ge et al. 2015]

 Gradient budget and termination criterion same as before
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Illustrative Example

N = 50, M = 200, single instance
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SGD works better in practice



Power System State Estimation

 Problem:

 Estimate complex voltages at all buses from noisy (Gaussian) 

power measurements

 Noisy Case

 Weighted Least Squares formulation
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Power Transmission Network



Experiments

 Test Networks obtained from the NESTA archive

 Voltage profile with magnitude                   and phase 

 Generate SCADA measurements using MATPOWER 

 Gaussian noise with variances 10 dBm and 13 dBm added to 

voltage and power measurements respectively

 Phase of reference bus set to zero

 Algorithmic Setup:

 Add Gauss-Newton (GN) method (with backtracking line-search) 

for comparison

 Initialize GN, GD and SGD from flat start

 GD and SGD have a total gradient budget of            gradients 

 GD with backtracking line-search (provable convergence!); 

minibatch SGD with normalized step-size rule 

 Output of SGD refined with 1-2 iterations of FPP-SCA [Wang et al., 

2016]

18



Illustrative Example
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WLS Cost Function vs. # Gradients/M NRMSE vs. # Gradients/M 

IEEE-162 bus network, N = 324 variables, M = 1054 measurements



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

PEGASE-89 bus network, 200 MC trials



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

IEEE-73 bus network, 200 MC trials



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

EDIN-189 bus network, 200 MC trials



Conclusions and Future Work

 First Order Methods for nonconvex quadratic feasibility 

problems

 Lightweight in terms of memory and computational resources; well-

suited for large-scale problems

 Stochastic Gradient Methods perform the best

 Work very well for random problem instances

 For PSSE, combined SGD + FPP meta-heuristic performs the best 

overall

 Future work

 Develop general theoretical guarantees

 Explain the behavior of algorithms for solving random systems of 

inequalities

 SCA via SGD?
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