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Nonconvex QCQPs

 General Form: 

 NP-Hard (in general)

 Ubiquitous in wireless communications, signal processing, 

power systems etc.

 Multicast beamforming [Sidiropoulos et al. 2006]

 Phase Retrieval [Fienup 1978]

 Optimal Power Flow [Carpentier 1962]

 Power System State Estimation [Schweppe et al. 1970]
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Nonconvex QCQPs

 Existing approaches

 Semidefinite Relaxation [Wolkowicz 2000, Luo et al. 2010]

 Solve rank relaxed SDP and use post-processing step (deterministic 

or randomized) to generate feasible solution; fails in most instances

 Successive Convex Approximation [Beck et al. 2010, Scutari et al. 2014]

 Approximate problem via sequence of convex problems; guaranteed 

convergence to stationary points 

 Requires feasible point for initialization; non-trivial to determine

 Feasible Point Pursuit [Mehanna et al. 2015, Kanatsoulis et al. 2015]

 Use SCA + slack variables to approximate feasibility problem

 Works with any choice of initialization; empirically performs very well

 Consensus ADMM [Huang et al. 2016]

 Decompose problem into multiple parallel QCQP-1 subproblems at 

every iteration; QCQP-1 is optimally solvable

 Enforce consensus among solutions to determine global variable
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Nonconvex QCQPs

 Drawbacks

 FPP-SCA and C-ADMM require computing eigendecompositions;  

additionally FPP-SCA requires storing the positive and negative 

definite parts in memory

 FPP-SCA requires solving a conic programming problem at every 

iteration incurring complexity 

 C-ADMM is very memory intensive, one local variable created for 

every constraint

 Computationally demanding/memory intensive

 Cannot be applied to large-scale problems

 We propose a FOM based approach for feasibility pursuit with 

low computational and memory requirements

 Works well in practice
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Problem Statement

 Exact Penalty Formulation

 Equivalently, in smooth form

 FPP-SCA corresponds to performing SCA on above problem

 Use FOMs on original formulation instead?

 Non-differentiable!
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Problem Formulation

 Inequality constraints:

 Define

 Smooth surrogate: [Nesterov 2004]

 Quality of approximation: [Nesterov 2004]

 Equality constraints:

 Define

 Overall formulation: 
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Overview of FOMs

 Minimizing average of finite sums via FOMs:

 Gradient Descent (GD): [Cauchy 1847]

 Stochastic Gradient Descent (SGD): [Robbins and Munro 1953]

 Sample                 uniformly at random (with replacement)

 Stochastic Variance Reduced Gradient (SVRG): [Johnson et al. 2014]

 Define stage    and inner stochastic iterations
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Convergence results for FOMs

 Convergence to stationary points

 Assumption: Lipschitz continuity of         and            

 GD [Nesterov 2004, Ghadimi et al. 2016]

 SGD [Ghadimi and Lan 2013]

 SVRG [Reddi et al. 2016]

 Convergence to local minima

 Assumption:         satisfies the strict-saddle property [Ge et al. 2015]

 GD (w/ random initialization) [Lee et al. 2016]

 SGD [Ge et al. 2015]

 Convergence to global minima (at linear rate!)

 Assumption:         satisfies the Polyak-Lojasiewicz (PL) inequality

 GD and SGD [Karimi et al. 2016]
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For our problem……

 Unconstrained Case 

 Not applicable in general;             is a quartic polynomial

 Constrained Case

 Requires step-size 

 Too small to work well in practice

 Stationary point not guaranteed to be feasible

 Heuristic Choices

 Diminishing:

 Polynomial:

 Generalization of inverse-t step schedule for SGD

 N-LMS:

 Simple counter-example where this works for minimizing a quartic 

function and all other reasonable step-sizes fail [Re et al. 2015]
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Synthetic Experiments

 Feasibility for random systems of quadratic inequalities

 Generate nonconvex quadratic feasibility problem such that 

there exists a feasible solution     with unit norm 

 Generate                from i.i.d. standard normal distribution

 Generate

 Algorithmic Setup:

 Set

 Initialize GD, SVRG and SGD from the same randomly 

generated unit-vector (no restarts)

 GD, SVRG and SGD have a total gradient budget of            

gradients 

 Polynomial step-size rule for GD and SVRG; diminishing step-

size rule for SGD

 Feasibility declared if 
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Illustrative Example

N = 200, M = 1000, single instance
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Timing: SGD – 17 secs, SVRG – 27 secs, GD – 83 secs



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 50 variables, varying M, 1000 instances for each value of M



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 100 variables, varying M, 1000 instances for each value of M



Detailed Experiments
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Feasibility Percentage vs. M # Gradients/M vs. M (feasible cases)

N = 200 variables, varying M, 1000 instances for each value of M



Synthetic Experiments (contd…)

 Solving random systems of quadratic equalities

 Generate               from spiked Gaussian ensemble

 A special case of the Matrix Sensing problem [Bhojanapalli et al. 2015]

 If                , then RIP satisfied with high probability

 Strict-saddle property satisfied; plus no spurious local minima 

exist (i.e., all local minima are also global minima)

 GD and SGD converge to global minima!                              

 Algorithmic Setup:

 Set

 Initialize GD with spectral initialization plus constant step-size; 

guaranteed (local) linear convergence rate [Tu et al. 2015]

 Initialize SGD with random initialization plus normalized step-

size rule; guaranteed convergence in polynomial-time [Ge et al. 2015]

 Gradient budget and termination criterion same as before
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Illustrative Example

N = 50, M = 200, single instance
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SGD works better in practice



Power System State Estimation

 Problem:

 Estimate complex voltages at all buses from noisy (Gaussian) 

power measurements

 Noisy Case

 Weighted Least Squares formulation
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Experiments

 Test Networks obtained from the NESTA archive

 Voltage profile with magnitude                   and phase 

 Generate SCADA measurements using MATPOWER 

 Gaussian noise with variances 10 dBm and 13 dBm added to 

voltage and power measurements respectively

 Phase of reference bus set to zero

 Algorithmic Setup:

 Add Gauss-Newton (GN) method (with backtracking line-search) 

for comparison

 Initialize GN, GD and SGD from flat start

 GD and SGD have a total gradient budget of            gradients 

 GD with backtracking line-search (provable convergence!); 

minibatch SGD with normalized step-size rule 

 Output of SGD refined with 1-2 iterations of FPP-SCA [Wang et al., 

2016]
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Illustrative Example
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WLS Cost Function vs. # Gradients/M NRMSE vs. # Gradients/M 

IEEE-162 bus network, N = 324 variables, M = 1054 measurements



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

PEGASE-89 bus network, 200 MC trials



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

IEEE-73 bus network, 200 MC trials



Detailed Experiments
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NRMSE vs. Measurement Fraction Wall Time vs. Measurement Fraction 

EDIN-189 bus network, 200 MC trials



Conclusions and Future Work

 First Order Methods for nonconvex quadratic feasibility 

problems

 Lightweight in terms of memory and computational resources; well-

suited for large-scale problems

 Stochastic Gradient Methods perform the best

 Work very well for random problem instances

 For PSSE, combined SGD + FPP meta-heuristic performs the best 

overall

 Future work

 Develop general theoretical guarantees

 Explain the behavior of algorithms for solving random systems of 

inequalities

 SCA via SGD?
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