Decentralized Power System State Estimation via Non-convex Multiagent Optimization

> Aritra Konar, Ahmed Zamzam & Nikos Sidiropoulos

> Dept. of ECE, University of Virginia Dept. of ECE, University of Minnesota

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Power System State Estimation

Undirected graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ Set of buses (nodes) $\mathcal{N} := \{1, \cdots, N\}$ Set of transmission lines (edges) \mathcal{E}

Available SCADA measurements \mathcal{L}_n at bus n

- Active and reactive power injections: $\{P_n, Q_n\}$
- Active and reactive power flows: $\{P_{nm}, Q_{nm}\}$
- Voltage magnitude: $|V_n|$

□ Problem Statement:

Given grid parameters and SCADA meter readings, estimate complex voltages at all buses

Power System State Estimation

□ Weighted LS formulation [Schweppe et al. 1970]

$$\min_{\mathbf{v}\in\mathcal{K}}\left\{F(\mathbf{v}):=\sum_{n=1}^{N}f_n(\mathbf{v}):=\sum_{n=1}^{N}\sum_{l\in\mathcal{L}_n}\frac{(\mathbf{v}^T\mathbf{H}_l\mathbf{v}-z_l)^2}{\sigma_l^2}\right\}$$

- > Set $\mathcal{K} \subset \mathbb{R}^{2N}$ represents constraints on \mathbf{v} known *apriori*; simple, convex, and compact
- Minimize non-convex cost function subject to convex constraints
- > NP-hard [Lehmann et al. 2016]

Objective:

- Compute high-quality approximate solutions in polynomial-time via simple decentralized algorithms
- Adopt multi-agent optimization approach

Assumptions

Network:

- Underlying voltage profile is fixed
- \succ Graph of the network \mathcal{G} is connected
- \succ Each bus $n \in \mathcal{N}$ only has knowledge of $f_n(.)$ and \mathcal{K}
- Each bus is only aware of its interconnections to its immediate neighbors

□ Formulation:

- \succ The set of minima of F(.) over \mathcal{K} is non-empty and compact
- > Each $f_n(.)$ is continuously differentiable on an open set containing \mathcal{K}
- $\succ \nabla f_n(.)$ is locally Lipschitz continuous on \mathcal{K}
- \succ F(.) is locally Lipschitz continuous on \mathcal{K}

Prior Art

□ Local state methods:

- Lagrangian Relaxation [Caro-Conejo-Minguez 2011]
- Alternating Direction Method of Multipliers [Kekatos-Giannakis 2013]
- Semidefinite Relaxation [Zhu-Giannakis 2014]
- Gauss-Newton [Minot-Lu-Li 2016]

Global state methods:

- Belief Propagation [Hu-Kuh-Yang-Kavcic 2011]
- Network Gossiping [Xie-Choi-Kar-Poor 2012]

□ Lack theoretical convergence guarantees

Prior Art (contd....)

Global state methods:

- Gossip-based Gauss-Newton [Li-Scaglione 2013]
 - Convergence to stationary points
 - Communication model different from grid topology
 - High per-iteration communication overhead
- This talk: In-network Non-convex Optimization (NEXT) [Lorenzo-Scutari 2016]
 - Communication model defined by grid topology
 - Gradient-consensus
 - Low per-iteration complexity
 - Reduced per-iteration communication overhead
 - Convergence to stationary points
- Decentralized Gradient Descent (DGD) [Bianchi-Jakubowicz 2013]

In-network Non-convex Optimization (NEXT)

- □ Algorithm:
 - Local successive convex approximation + dynamic consensus
 - Each bus constructs local convex surrogate of global cost function
 - In this talk: use gradient-based quadratic surrogate
 - Consensus for enforcing agreement and propagating information across network
 - > At each iteration $k \in \mathbb{N}$, given local estimates $\{\mathbf{v}_n[k]\}_{n=1}^N$
 - Step 1: Perform local GD updates of the form

$$\tilde{\mathbf{v}}_{n}[k] = \mathbf{\Pi}_{\mathcal{K}} \left(\mathbf{v}_{n}[k] - \frac{1}{\tau} (\nabla f_{n}(\mathbf{v}_{n}[k]) + \tilde{\boldsymbol{\pi}}_{n}[k]) \right)$$
$$\mathbf{z}_{n}[k] = \mathbf{v}_{n}[k] + \beta[k](\tilde{\mathbf{v}}_{n}[k] - \mathbf{v}_{n}[k]), \forall n \in \mathcal{N}$$

where $\tau > 0$, $\tilde{\pi}_n[k]$ approximates $\pi_n[k] := \sum_{m \neq n} \nabla f_m(\mathbf{v}_n[k])$

• Requires local auxiliary variable $y_n[k]$ for tracking

 $\overline{\nabla F}(\mathbf{v}_n[k]) := (1/N) \sum_{n=1}^N \nabla f_n(\mathbf{v}_n[k])$

□ Algorithm: (contd.)

Step 2: Perform local exchanges followed by updates

$$\begin{aligned} \mathbf{v}_n[k+1] &= \sum_{m \in \bar{\mathcal{N}}_n} W_{nm} \mathbf{z}_m[k] \\ \mathbf{y}_n[k+1] &= \sum_{m \in \bar{\mathcal{N}}_n} W_{nm} \mathbf{y}_m[k] + (\nabla f_n(\mathbf{v}_n[k+1]) - \nabla f_n(\mathbf{v}_n[k])) \\ \tilde{\pi}_n[k+1] &= N \mathbf{y}_n[k+1] - \nabla f_n(\mathbf{v}_n[k+1]), \ \forall \ n \in \mathcal{N}, \forall \ k \in \mathbb{N} \end{aligned}$$

where $\overline{\mathcal{N}}_n := \{m | (n,m) \in \mathcal{E}\} \cup \{n\}, \mathbf{W} \in \mathbb{R}^{N \times N}$ is doubly stochastic

□ Features:

- ▶ If $\beta[k] \in (0,1], \sum_{k \in \mathbb{N}} \beta[k] = \infty, \sum_{k \in \mathbb{N}} \beta^2[k] < \infty$, then
 - We have

$$\|\overline{\nabla F}(\mathbf{v}_n[k]) - \mathbf{y}_n[k+1]\| \xrightarrow[k \to \infty]{} 0, \forall n \in \mathcal{N}$$

- All sequences $\{\mathbf{v}_n[k]\}_{k\in\mathbb{N}}$ asymptotically attain consensus
- Sequence $\{\mathbf{v}_{avg}[k]\}_{k\in\mathbb{N}}$ converges to set of stationary points

In-network Non-convex Optimization (NEXT)

□ Features:

- Low per-iteration complexity at each bus
 - Computing local gradient requires sparse-matrix vector multiplications
 - Projection operation is simple to compute
- \succ Communication overhead per-iteration: O(N)
 - Average degree of each bus is small
 - Higher than local state methods, but comes with the benefit of providing each bus with global information
- Sparsity of power network facilitates synchronous implementation

Experiments

Setup

- > Voltage profile with magnitude ~ $\mathcal{U}[0.9, 1.1]$ and phase ~ $\mathcal{U}[-0.1\pi, 0.1\pi]$
- Generate SCADA measurements using MATPOWER
- Phase of reference bus set to zero
- > Initialize algorithms from flat start $\mathbf{v} = [\mathbf{1}^T; \mathbf{0}^T]^T$
- $\succ \text{ Feasible set } \mathcal{K} = \{ \mathbf{v} \in \mathbb{R}^{2N} | v_n^2 + v_{n+N}^2 \leq (1.1)^2, \forall n \in \mathcal{N} \}$
- Generate W using Metropolis-Hastings Rule

► Step-size rule: $\beta[k+1] = \beta[k](1 - \gamma\beta[k]), \forall k \in \mathbb{N}, \beta[0] = (0,1], \gamma \in (0,1)$

Performance Metrics

• Consensus disagreement: $C[k] := \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{v}_n[k] - \mathbf{v}_{avg}[k]\|^2$

• NMSE:
$$E[k] := \frac{\|\mathbf{v} - \mathbf{v}_{avg}[k]\|_2}{\|\mathbf{v}\|_2}$$

Progress towards stationarity:

 $S[k] := \|\mathbf{v}_{\text{avg}}[k] - \mathbf{\Pi}_{\mathcal{K}}(\mathbf{v}_{\text{avg}}[k] - \nabla F(\mathbf{v}_{\text{avg}}[k]))\|_{\infty}, \forall k \in \mathbb{N}$

Illustrative Example

IEEE-14 bus network, noiseless case

NEXT demonstrates better performance across all metrics

Preliminary Experiments

□ Noisy case:

Gaussian noise with variances 10 dBm and 13 dBm added to voltage and power measurements respectively

□ IEEE-57 bus network:

	C[k]	E[k]
DGD	8.71×10^{-7}	0.0346
NEXT	6.62×10^{-8}	0.0020

□ IEEE-118 bus network:

	C[k]	E[k]
DGD	4.86×10^{-6}	0.1247
NEXT	9.16×10^{-6}	0.0352

Conclusions and Future Work

Multi-agent optimization for state estimation

- Synchronous gradient consensus algorithms
- NEXT outperforms DGD on tests

Future work

- More sophisticated variants of NEXT
- Hybrid state estimation
- Robust estimation approaches
- Tests on larger networks

Thank you!

University of Minnesota Driven to Discoversm

Decentralized Gradient Descent (DGD)

Algorithm: [Bianchi-Jakubowicz 2013]

> At each iteration $k \in \mathbb{N}$, given local estimates $\{\bar{\mathbf{v}}_n[k]\}_{n=1}^N$

Step 1: Perform local GD updates of the form

$$\bar{\mathbf{z}}_n[k] = \mathbf{\Pi}_{\bar{\mathcal{K}}}(\bar{\mathbf{v}}_n[k] - \alpha[k]\nabla f_n(\bar{\mathbf{v}}_n[k])), \ \forall \ n \in \mathcal{N}$$

Step 2: Perform local exchanges followed by weighted average

$$\bar{\mathbf{v}}_n[k+1] = \sum_{m \in \overline{\mathcal{N}}_n} W_{nm} \bar{\mathbf{z}}_m[k], \ \forall \ n \in \mathcal{N}$$

where $\overline{\mathcal{N}}_n := \{m | (n,m) \in \mathcal{E}\} \cup \{n\}, \mathbf{W} \in \mathbb{R}^{N \times N}$ is doubly stochastic

□ Features:

► If
$$\alpha[k] \ge 0, \sum_{k \in \mathbb{N}} \alpha[k] = \infty, \ \sum_{k \in \mathbb{N}} \alpha^2[k] < \infty$$
 , then

- Asymptotic consensus; i.e., $\|\bar{\mathbf{v}}_n[k] \bar{\mathbf{v}}_{avg}[k]\| \xrightarrow[k \to \infty]{} 0, \forall n \in \mathcal{N}$
- Sequence $\{\bar{\mathbf{v}}_{avg}[k]\}_{k \in \mathbb{N}}$ converges to set of stationary points

