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Power System State Estimation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q  Problem Statement: 
Ø Given grid parameters and SCADA meter readings, estimate 

complex voltages at all buses 
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Power Transmission Network: 
 

Available SCADA measurements       at bus  
§  Active and reactive power injections: 
§  Active and reactive power flows: 
§  Voltage magnitude: |Vn|

{Pn, Qn}

G = (N , E)

E
N := {1, · · · , N}Set of buses (nodes) 

Set of transmission lines (edges) 

Undirected graph 

Ln

{Pnm, Qnm}

n



Power System State Estimation 

q  Weighted LS formulation [Schweppe et al. 1970] 

 
Ø Set                represents constraints on     known apriori; simple, 

convex, and compact  
Ø Minimize non-convex cost function subject to convex constraints 
Ø NP-hard [Lehmann et al. 2016] 

 
q  Objective: 

Ø Compute high-quality approximate solutions in polynomial-time 
via simple decentralized algorithms 

Ø Adopt multi-agent optimization approach 
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Assumptions 

q  Network: 
Ø Underlying voltage profile is fixed 

Ø Graph of the network     is connected  
Ø Each bus            only has knowledge of         and  
Ø Each bus is only aware of its interconnections to its immediate 

neighbors  

q  Formulation: 
Ø  The set of minima of         over      is non-empty and compact 
Ø Each         is continuously differentiable on an open set 

containing  
Ø             is locally Lipschitz continuous on  
Ø         is locally Lipschitz continuous on  

 

 

 4 

fn(.)
G

n 2 N

F (.)

fn(.)

rfn(.)

F (.)

K

K

K
K

K



Prior Art 

q  Local state methods: 
Ø  Lagrangian Relaxation [Caro-Conejo-Minguez 2011] 

Ø Alternating Direction Method of Multipliers [Kekatos-Giannakis 2013] 
Ø Semidefinite Relaxation [Zhu-Giannakis 2014] 

Ø Gauss-Newton [Minot-Lu-Li 2016] 

 
q  Global state methods: 

Ø Belief Propagation [Hu-Kuh-Yang-Kavcic 2011] 
Ø Network Gossiping [Xie-Choi-Kar-Poor 2012] 

q  Lack theoretical convergence guarantees 
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Prior Art (contd….) 

 
q  Global state methods:  

Ø Gossip-based Gauss-Newton [Li-Scaglione 2013] 
§  Convergence to stationary points 
§  Communication model different from grid topology 
§  High per-iteration communication overhead 

Ø  This talk: In-network Non-convex Optimization (NEXT) [Lorenzo-
Scutari 2016] 
§  Communication model defined by grid topology 
§  Gradient-consensus 
§  Low per-iteration complexity  
§  Reduced per-iteration communication overhead 
§  Convergence to stationary points 

Ø Decentralized Gradient Descent (DGD) [Bianchi-Jakubowicz 2013] 
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In-network Non-convex Optimization (NEXT) 

q  Algorithm:  
Ø  Local successive convex approximation + dynamic consensus 

§  Each bus constructs local convex surrogate of global cost function 
§  In this talk: use gradient-based quadratic surrogate 
§  Consensus for enforcing agreement and propagating information 

across network 
Ø At each iteration          , given local estimates 

§  Step 1: Perform local GD updates of the form   

§  Requires local auxiliary variable            for tracking  
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k 2 N

where ⌧ > 0, ⇡̃n[k] approximates 

{vn[k]}Nn=1

ṽn[k] = ⇧K

✓
vn[k]�

1

⌧
(rfn(vn[k]) + ⇡̃n[k])

◆

zn[k] = vn[k] + �[k](ṽn[k]� vn[k]), 8 n 2 N

rF (vn[k]) := (1/N)
PN

n=1 rfn(vn[k])

⇡n[k] :=
P

m 6=n rfm(vn[k])

yn[k]



In-network Non-convex Optimization (NEXT) 

q  Algorithm: (contd.) 
§  Step 2: Perform local exchanges followed by updates 

q  Features: 
Ø  If                                                                    , then 

§  We have 

§  All sequences                   asymptotically attain consensus 
§  Sequence                      converges to set of stationary points 
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�[k] 2 (0, 1],
P

k2N �[k] = 1,
P

k2N �2[k] < 1

Nn := {m|(n,m) 2 E} [ {n}where is doubly stochastic ,W 2 RN⇥N

vn[k + 1] =
X

m2N̄n

Wnmzm[k]

yn[k + 1] =
X

m2N̄n

Wnmym[k] + (rfn(vn[k + 1])�rfn(vn[k])

⇡̃n[k + 1] = Nyn[k + 1]�rfn(vn[k + 1]), 8 n 2 N , 8 k 2 N

krF (vn[k])� yn[k + 1]k �!
k!1

0, 8 n 2 N

{vn[k]}k2N
{vavg[k]}k2N



In-network Non-convex Optimization (NEXT) 

 
q  Features: 

Ø  Low per-iteration complexity at each bus 
§  Computing local gradient requires sparse-matrix vector 

multiplications 
§  Projection operation is simple to compute 

Ø Communication overhead per-iteration: 
§  Average degree of each bus is small  
§  Higher than local state methods, but comes with the benefit of 

providing each bus with global information 
 

Ø Sparsity of power network facilitates synchronous 
implementation 
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Experiments 

q  Setup 
Ø Voltage profile with magnitude                   and phase  
Ø Generate SCADA measurements using MATPOWER  
Ø Phase of reference bus set to zero 
Ø  Initialize algorithms from flat start  
Ø  Feasible set 
Ø Generate      using Metropolis-Hastings Rule   
Ø Step-size rule: 
Ø Performance Metrics 

§  Consensus disagreement: 

§   NMSE: 

§  Progress towards stationarity: 
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W

v = [1T ;0T ]T

K = {v 2 R2N | v2n + v2n+N  (1.1)2, 8n 2 N}

�[k + 1] = �[k](1� ��[k]), 8 k 2 N,�[0] = (0, 1], � 2 (0, 1)

C[k] :=
1

N

NX

n=1

kvn[k]� vavg[k]k2

E[k] :=
kv � vavg[k]k2

kvk2

S[k] := kvavg[k]�⇧K(vavg[k]�rF (vavg[k]))k1, 8 k 2 N



Illustrative Example 
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Consensus Disagreement vs 
iterations 

IEEE-14 bus network, noiseless case 
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NEXT demonstrates better performance across all metrics   



Preliminary Experiments 

q  Noisy case: 
Ø Gaussian noise with variances 10 dBm and 13 dBm added to 

voltage and power measurements respectively 

q  IEEE-57 bus network: 

q  IEEE-118 bus network:  
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C[k] E[k]
DGD 4.86⇥ 10�6 0.1247
NEXT 9.16⇥ 10�6 0.0352

C[k] E[k]
DGD 8.71⇥ 10�7 0.0346
NEXT 6.62⇥ 10�8 0.0020



Conclusions and Future Work 

q  Multi-agent optimization for state estimation 
Ø Synchronous gradient consensus algorithms 
Ø NEXT outperforms DGD on tests 

 
 

q  Future work 
Ø More sophisticated variants of NEXT 
Ø Hybrid state estimation 
Ø Robust estimation approaches 
Ø  Tests on larger networks 
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Thank you! 



Decentralized Gradient Descent (DGD) 

q  Algorithm: [Bianchi-Jakubowicz 2013] 
Ø At each iteration          , given local estimates 

§  Step 1: Perform local GD updates of the form   

§  Step 2: Perform local exchanges followed by weighted average                

 
 
 
q  Features: 

Ø  If                                                                      , then  

§  Asymptotic consensus; i.e.,  
§  Sequence                     converges to set of stationary points 
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{v̄n[k]}Nn=1k 2 N

z̄n[k] = ⇧K̄(v̄n[k]� ↵[k]rfn(v̄n[k])), 8 n 2 N

v̄n[k + 1] =
P

m2Nn
Wnmz̄m[k], 8 n 2 N

Nn := {m|(n,m) 2 E} [ {n}where is doubly stochastic ,W 2 RN⇥N
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