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Power System State Estimation

Power Transmission Network: Undirected graph G = (N, €)
Set of buses (nodes) A/ := {1,--- , N}
Set of transmission lines (edges) £
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Available SCADA measurements L,, at bus n

= Active and reactive power injections: { P, @n }
= Active and reactive power flows: { P, Qnm }
= Voltage magnitude: |V,,|

O Problem Statement:

» Given grid parameters and SCADA meter readings, estimate
complex voltages at all buses
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Power System State Estimation

O Weighted LS formulation [Schweppe et al. 1970]

n=11lel,,

> Set I ¢ R?N represents constraints on v known apriori; simple,
convex, and compact

» Minimize non-convex cost function subject to convex constraints
» NP-hard [Lehmann et al. 2016]

O Objective:

» Compute high-quality approximate solutions in polynomial-time
via simple decentralized algorithms

» Adopt multi-agent optimization approach




Assumptions

O Network:
» Underlying voltage profile is fixed
» Graph of the network G is connected
> Each bus n € A only has knowledge of f»(.)and K

» Each bus is only aware of its interconnections to its immediate
neighbors

O Formulation:
» The set of minima of F'(.) over K is non-empty and compact

> Each f,.(.) is continuously differentiable on an open set
containing /C

> V fn(.)is locally Lipschitz continuous on K
> F(.)is locally Lipschitz continuous on /C




Prior Art

Q Local state methods:
» Lagrangian Relaxation [Caro-Conejo-Minguez 2011]
» Alternating Direction Method of Multipliers [Kekatos-Giannakis 2013]
» Semidefinite Relaxation [Zhu-Giannakis 2014]
» Gauss-Newton [Minot-Lu-Li 2016]

Q Global state methods:
» Belief Propagation [Hu-Kuh-Yang-Kavcic 2011]
» Network Gossiping [Xie-Choi-Kar-Poor 2012]

Q Lack theoretical convergence guarantees




Prior Art (contd....)

O Global state methods:

» Gossip-based Gauss-Newton [Li-Scaglione 2013]
= Convergence to stationary points
= Communication model different from grid topology
= High per-iteration communication overhead

» This talk: In-network Non-convex Optimization (NEXT) [Lorenzo-
Scutari 2016]

= Communication model defined by grid topology
» Gradient-consensus

= Low per-iteration complexity

» Reduced per-iteration communication overhead
= Convergence to stationary points

» Decentralized Gradient Descent (DGD) [Bianchi-Jakubowicz 2013]




In-network Non-convex Optimization (NEXT)

a Algorithm:
» Local successive convex approximation + dynamic consensus
= Each bus constructs local convex surrogate of global cost function
= |n this talk: use gradient-based quadratic surrogate

= Consensus for enforcing agreement and propagating information
across network
N

> At each iteration k£ € N, given local estimates {v,[k]},,_;
= Step 1: Perform local GD updates of the form

5[] = Tl (valk] = (V4 valb]) + 7l )

z, k] = v [k] + BlE]|(Valk] — valk]),Vn e N
where 7 > 0, 7,,[k] approximates 7y k| := Zm7ﬁn V fm(vnlk])
= Requires local auxiliary variable y k] for tracking

VE(va[K]) == (1/N) 0, Vfu(valk])




In-network Non-convex Optimization (NEXT)

a Algorithm: (contd.)

= Step 2: Perform local exchanges followed by updates
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meN,

walk+1] = Ny, lk+1] = Vfu(vplk+1]), Vne N,Vk eN
where N,, := {m|(n,m) € £} U {n}, W € RV*¥ is doubly stochastic

d Features:

> If Blk] € (0, 1],ZkEN6[k] = 00, ZkeN B2k] < oo, then
= \We have

IVE(valk]) = yulk + 1] — 0.¥n €N

= All sequences {v, k] }ren asymptotically attain consensus
= Sequence {Vavg|k] }ken converges to set of stationary points




In-network Non-convex Optimization (NEXT)

d Features:

» Low per-iteration complexity at each bus

= Computing local gradient requires sparse-matrix vector
multiplications

= Projection operation is simple to compute

» Communication overhead per-iteration: O(N)

= Average degree of each bus is small

= Higher than local state methods, but comes with the benefit of
providing each bus with global information

» Sparsity of power network facilitates synchronous
implementation




Experiments

Q Setup
» Voltage profile with magnitude ~ /[0.9, 1.1]and phase ~ U[—0.17,0.17]
» Generate SCADA measurements using MATPOWER
» Phase of reference bus set to zero
> Initialize algorithms from flat start v = [17; 0]
> Feasible set K = {v e R*"|v2 +v2_ y < (1.1)*,Yn e N}
» Generate W using Metropolis-Hastings Rule
» Step-size rule: Blk + 1] = Blk](1 — yBk]),V k € N, 5[0] = (0,1],v € (0,1)
» Performance Metrics

= Consensus disagreement: C[k Z [Vilk] — Vave[K]|]?

[V — VavgF]l]2
vl

= NMSE: E[k] :=

» Progress towards stationarity:
Sk] = || Vav[k] — T (Vavg[k] — VF (Vayglk]))l|oo, Vi € N
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lllustrative Example

IEEE-14 bus network, noiseless case
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NEXT demonstrates better performance across all metrics
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Preliminary Experiments

a Noisy case:

» Gaussian noise with variances 10 dBm and 13 dBm added to
voltage and power measurements respectively

d IEEE-57 bus network:

C[K] EK]
DGD | 8.71 x 10~7 | 0.0346
NEXT | 6.62 x 10~8 | 0.0020

d IEEE-118 bus network:

Ck] E k]
DGD | 4.86 x 1076 | 0.1247
NEXT | 9.16 x 10=% | 0.0352




Conclusions and Future Work

O Multi-agent optimization for state estimation
» Synchronous gradient consensus algorithms
» NEXT outperforms DGD on tests

Q Future work
» More sophisticated variants of NEXT
» Hybrid state estimation
» Robust estimation approaches
» Tests on larger networks
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Decentralized Gradient Descent (DGD)

Q Algorithm: [Bianchi-Jakubowicz 2013]
N

> At each iteration £ € N, given local estimates {v, |k}, _1
= Step 1: Perform local GD updates of the form

Zn[k] — Hl@(‘_’n[k] - Ck[k]an(\_fn[k])), VneN
= Step 2: Perform local exchanges followed by weighted average
Valk +1] =3 . WamZmlk], Vn e N

where N, := {m|(n,m) € £} U{n}, W € RV*¥ is doubly stochastic

d Features:
> If alk] >0, ZkeNa[lﬁ] = 00, ZkeN ozz[k] < 0o, then

= Asymptotic consensus; i.e., [[Vnlk] = Vavg[F]|| — 0,V n e N
= Sequence{Vave|k]}ren converges to set of stationary points
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