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Introduction

 Transmit Beamforming [Farrokhi et al. 1998, Bengtsson-Ottersten 2001, 

Lopez 2002, Sidiropoulos et al. 2006]

 Exploit CSIT at base station (BS) for enhancing throughput in 

multi-antenna systems

 Exact CSIT cannot be obtained in practice

 Accurately estimating CSI incurs large system overhead

 Alternative: Use robust beamformer design approach for dealing 

with channel uncertainty

 This talk:

 Model: Equally applicable to both point-to-point MISO and 

single-group multicast beamforming scenarios

 Adopt outage based design criterion

 Downlink channels modeled as random vectors

 Minimize probability of QoS dropping below a certain threshold s.t.

power constraints
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Prior Art

 Worst-case design: [Karipidis et al. 2008, Zheng et al. 2008, Tajer et al. 2011, 

Song et al. 2012, Huang et al. 2013, Ma et al. 2017]

 Metric: worst-case QoS w.r.t. all channel perturbations

 Can result in a very conservative design

 Outage-based design: [Xie et al. 2005, Vorobyov et al. 2008, Ntranos et al.

2009, Wang et al. 2014, He-Wu 2015, Sohrabi-Davidson 2016] 

 Metric: QoS satisfies threshold with high probability

 Vary level of conservativeness by changing threshold

 Majority of prior art:

 (partial) knowledge of distribution required

 Approximation algorithms – centralized, can be computationally 

demanding

 This talk:

 No explicit assumptions made on underlying distribution

 Use stochastic approximation to develop simple online algorithms

 Limited theoretical analysis, works well in simulations
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Problem Statement

 Point-to-point scenario:

 BS equipped with     transmit antennas

 Received signal at user:

 Model temporal variations of     as different realizations drawn 

from an underlying distribution

 Example: Gaussian Mixture Model [Ntranos et al. 2009]

 Interpretation: Each Gaussian kernel corresponds to a channel state 

 Formulation:
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Set of per-antenna power constraints



Problem Statement

 Challenges:

 If distribution known apriori, no requirement for CSIT 

 However, optimization problem may not be easy to solve

 NP-hard under GMM assumption [Ntranos et al. 2009]

 Hard to design algorithms for approximate minimization

 Evaluating cost function and its higher-order derivatives may require 

computing cumbersome integrals 

 Exact knowledge of distribution not available in practice 

 Approach:

 Reformulate as stochastic optimization problem

 Use stochastic approximation based algorithms for computing 

solutions
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Stochastic Approximation

 Benefits:

 Explicit knowledge of channel distribution not required

 Amenable for online implementation

 Naturally robust to intermittent/stale feedback from the user 

 All channel vectors are statistically equivalent

 Feedback requirements are considerably relaxed

 Overall, well suited for massive MIMO systems

 Major roadblock:

 Indicator function is discontinuous, non-convex

 Prevents direct application of stochastic approximation based 

algorithms

 Our approach: Approximate indicator function via smooth 

surrogates
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Constructing smooth surrogates

 Transformation to real domain:

 Define                                 where 

 Sigmoid Approximation:

 Smoothed Point-wise Max Approximation:
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and

Non-differentiable! Solution: Apply Nesterov Smoothing [Nesterov 2005]



Problem Formulation

 Modified Problem:

 Replace indicator function by smooth surrogates to obtain

 Represent both via the prototypical optimization problem

 Minimize by sequentially processing stream of realizations
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: convex, compact and simple

: random vector drawn from unknown probability distribution       

with support set

: non-convex, twice differentiable



Algorithms

 Online Gradient Descent (OGD)

 Given realization      define 

 Perform update

 Online Variance Reduced Gradient (OVRG) [Frostig et al. 2015]

 Streaming variant of SVRG [Johnson-Zhang 2013]

 Epoch based algorithm

 At each stage            , define centering variable

 Gradient                       is unavailable, so form surrogate via mini-

batching

 Perform update  
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Baseline for comparison

 Alternative approach

 Maximize lower bound of objective function 

 NP-hard to compute [Ntranos et al. 2009]

 Construct lower bound using moment information [He-Wu 2015]

 Entails solving non-trivial, non-convex problem

 Not suitable for online approximation

 Use Markov’s inequality to maximize upper bound [Ntranos et al.

2009]

 Problem formulation: 

 Approximately maximize in online setting using framework of 

Stochastic SUM [Sanjabi-Razaviyayn-Luo 2016]

10



Experiments

 Setup

 Algorithms: Sigmoid OGD & OVRG, PWM OGD & OVRG, 

Online Markov Approximation (OM-App)

 Set smoothing parameter 

 Diminishing step-size for OGD, constant for OVRG and OM-App

 For OVRG

 Length of each stage

 Mini-batch sizes:

 Fix maximum gradient budget for all methods

 Massive MIMO scenario (large no. of BS antennas)

 Power budget: -6dbW per antenna

 Generate channels using GMM with 4 kernels

 Equal mixture probabilities

 Mean of each kernel modeled using different LOS component 
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Illustrative Example
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Detailed Experiments
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OVRG based methods best overall
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Conclusions

 Transmit Beamforming for Minimum Outage 

 Minimize outage probability subject to power constraints

 No prior knowledge of distribution required at BS

 Reformulate as stochastic optimization problem

 Construct smooth surrogate of indicator function

 Use simple stochastic approximation based algorithms for 

computing solutions based on user feedback

 Channel estimates can be intermittent/delayed/stale

 Works well in practice

 PWM OVRG performs best overall

 Well suited for massive MIMO systems
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Thank you!


