Transmit Beamforming for Minimum Outage via Stochastic Approximation

Yunmei Shi, Aritra Konar, Nikos Sidiropoulos, Xing-Peng Mao & Yong-Tan Liu

Dept. of ECE, University of Virginia
Dept. of EIE, Harbin Institute of Technology
Dept. of ECE, University of Minnesota
Introduction

 - Exploit CSIT at base station (BS) for enhancing throughput in multi-antenna systems
 - Exact CSIT cannot be obtained in practice
 - Accurately estimating CSI incurs large system overhead
 - Alternative: Use robust beamformer design approach for dealing with channel uncertainty

- **This talk:**
 - Model: Equally applicable to both point-to-point MISO and single-group multicast beamforming scenarios
 - Adopt outage based design criterion
 - Downlink channels modeled as random vectors
 - Minimize probability of QoS dropping below a certain threshold s.t. power constraints
Prior Art

 - Metric: worst-case QoS w.r.t. all channel perturbations
 - Can result in a very conservative design

 - Metric: QoS satisfies threshold with high probability
 - Vary level of conservativeness by changing threshold
 - Majority of prior art:
 - (partial) knowledge of distribution required
 - Approximation algorithms – centralized, can be computationally demanding
 - This talk:
 - No explicit assumptions made on underlying distribution
 - Use stochastic approximation to develop simple online algorithms
 - Limited theoretical analysis, works well in simulations
Problem Statement

- **Point-to-point scenario:**
 - BS equipped with N transmit antennas
 - Received signal at user:
 $$y = h^H w s + n$$
 - Model temporal variations of h as different realizations drawn from an underlying distribution
 - Example: Gaussian Mixture Model [Ntranos et al. 2009]
 - Interpretation: Each Gaussian kernel corresponds to a channel state
 - Formulation:
 $$\min_{w \in \mathcal{W}} \left\{ F(w) := \Pr\left(|w^H h|^2 \leq \gamma \right) \right\}$$
 $$\mathcal{W} := \{ w \in \mathbb{C}^N | |w(n)|^2 \leq P_n, \forall n \in [N] \}$$
 Set of per-antenna power constraints
Problem Statement

- **Challenges:**
 - If distribution known apriori, no requirement for CSIT
 - However, optimization problem may not be easy to solve
 - NP-hard under GMM assumption [Ntranos et al. 2009]
 - Hard to design algorithms for approximate minimization
 - Evaluating cost function and its higher-order derivatives may require computing cumbersome integrals
 - Exact knowledge of distribution not available in practice

- **Approach:**
 - Reformulate as stochastic optimization problem
 - Use stochastic approximation based algorithms for computing solutions

\[
\min_{w \in \mathcal{W}} \Pr \left(|w^H h|^2 \leq \gamma \right) \leftrightarrow \min_{w \in \mathcal{W}} \mathbb{E}_h \left[\mathbb{I}_{\{ |w^H h|^2 \leq \gamma \}} \right]
\]
Stochastic Approximation

Benefits:

- Explicit knowledge of channel distribution not required
- Amenable for online implementation
- Naturally robust to intermittent/stale feedback from the user
 - All channel vectors are statistically equivalent
 - Feedback requirements are considerably relaxed
- Overall, well suited for massive MIMO systems

Major roadblock:

- Indicator function is discontinuous, non-convex
 - Prevents direct application of stochastic approximation based algorithms
- Our approach: Approximate indicator function via smooth surrogates
Constructing smooth surrogates

- Transformation to real domain:
 - Define $f(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) := I\{\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2 \leq \gamma\}$ where $\tilde{\mathbf{w}} := [\Re[\mathbf{w}]^T, \Im[\mathbf{w}]^T]^T \in \mathbb{R}^{2N}$
 - $\tilde{\mathbf{h}} := [\Re[\mathbf{h}]^T, \Im[\mathbf{h}]^T]^T \in \mathbb{R}^{2N}$ and $\tilde{\mathbf{H}} := \begin{bmatrix} \Re[\mathbf{h}] & \Im[\mathbf{h}] \\ \Im[\mathbf{h}] & -\Re[\mathbf{h}] \end{bmatrix} \in \mathbb{R}^{2N \times 2}$

- Sigmoid Approximation:
 - $u(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) := \frac{1}{1 + \exp (\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2 - \gamma)}$

- Smoothed Point-wise Max Approximation:
 - $v(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) := \max \left\{ 0, 1 - \frac{\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2}{\gamma} \right\} = \max_{0 \leq y \leq 1} \left\{ y \left(1 - \frac{\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2}{\gamma} \right) \right\}$
 - Non-differentiable! Solution: Apply Nesterov Smoothing [Nesterov 2005]

- $v(\mu)(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) = \max_{0 \leq y \leq 1} \left\{ y \left(1 - \frac{\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2}{\gamma} \right) - \frac{\mu}{2} y^2 \right\} = \begin{cases} 0, & g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) < 0 \\ \frac{1}{2\mu} \left(g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) \right)^2, & 0 \leq g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) \leq \mu \\ g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) - \frac{\mu}{2}, & g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) > \mu \end{cases}$

$g(\tilde{\mathbf{w}}; \tilde{\mathbf{h}}) := 1 - \frac{\|\tilde{\mathbf{H}}^T\tilde{\mathbf{w}}\|_2^2}{\gamma}$
Problem Formulation

- Modified Problem:
 - Replace indicator function by smooth surrogates to obtain
 \[
 \min_{\tilde{w} \in \tilde{W}} \left\{ U(\tilde{w}) := \mathbb{E}_{h} [u(\tilde{w}; \tilde{h})] \right\}
 \]
 \[
 \min_{\tilde{w} \in \tilde{W}} \left\{ V^{(\mu)}(\tilde{w}) := \mathbb{E}_{h} [v^{(\mu)}(\tilde{w}; \tilde{h})] \right\}
 \]
 - Represent both via the prototypical optimization problem
 \[
 \min_{x \in \mathcal{X}} \mathbb{E}_{\xi} [f(x; \xi)]
 \]
 \[\mathcal{X} \subset \mathbb{R}^{d} : \text{convex, compact and simple}\]
 \[\xi : \text{random vector drawn from unknown probability distribution with support set } \Xi \subset \mathbb{R}^{d}\]
 \[f : \mathcal{X} \times \Xi \to \mathbb{R}\]
 \[f(\cdot; \xi) : \text{non-convex, twice differentiable}\]
 - Minimize by sequentially processing stream of realizations \(\{\xi_t\}_{t=0}^{\infty}\)
Algorithms

- **Online Gradient Descent (OGD)**
 - Given realization ξ_t, define $f_t(x) := f(x; \xi_t)$
 - Perform update
 \[x^{(t+1)} = \Pi_{\mathcal{X}}(x^{(t)} - \alpha_t \nabla f_t(x^{(t)})), \forall t \in \mathbb{N} \]

- **Online Variance Reduced Gradient (OVRG) [Frostig et al. 2015]**
 - Streaming variant of SVRG [Johnson-Zhang 2013]
 - Epoch based algorithm
 - At each stage $s \in [S]$, define centering variable y_s
 - Gradient $\mathbb{E}_{\xi}[\nabla f(y_s; \xi)]$ is unavailable, so form surrogate via mini-batching
 \[\hat{g}_s := \frac{1}{k_s} \sum_{i \in [k_s]} \nabla f_i(y_s) \]
 - Perform update
 \[x_s^{(t+1)} = \Pi_{\mathcal{X}}(x_s^{(t)} - \alpha_s^{(t)} (\nabla f_t(x_s^{(t)}) - \nabla f_t(y_s) + \hat{g}_s)), \forall t \in [T] \]
Baseline for comparison

Alternative approach

\[
\min_{w \in \mathcal{W}} \Pr[|w^H h|^2 \leq \gamma] \iff \max_{w \in \mathcal{W}} \Pr[|w^H h|^2 \geq \gamma]
\]

- Maximize lower bound of objective function
- NP-hard to compute [Ntranos et al. 2009]
- Construct lower bound using moment information [He-Wu 2015]
 - Entails solving non-trivial, non-convex problem
 - Not suitable for online approximation
- Use Markov’s inequality to maximize upper bound [Ntranos et al. 2009]

\[
\Pr[|w^H h|^2 \geq \gamma] \leq \gamma^{-1} w^H R w, \forall w \in \mathcal{W} \quad R := \mathbb{E}[hh^H]
\]

- Problem formulation: \[\max_{w \in \mathcal{W}} w^H R w\]
- Approximately maximize in online setting using framework of Stochastic SUM [Sanjabi-Razaviyayn-Luo 2016]
Experiments

Setup

- Algorithms: Sigmoid OGD & OVRG, PWM OGD & OVRG, Online Markov Approximation (OM-App)
- Set smoothing parameter $\mu = 10^{-3}$
- Diminishing step-size for OGD, constant for OVRG and OM-App
- For OVRG
 - Length of each stage $T = 1000$
 - Mini-batch sizes:
 $k_s = \begin{cases}
 80, & s = 1 \\
 2k_{s-1}, & k_s < 640 \\
 640, & \text{otherwise}
 \end{cases}$
- Fix maximum gradient budget for all methods
- Massive MIMO scenario (large no. of BS antennas)
 - Power budget: -6dbW per antenna
- Generate channels using GMM with 4 kernels
 - Equal mixture probabilities
 - Mean of each kernel modeled using different LOS component
Illustrative Example

N = 100 BS antennas, Ks = 200, γ = 4

OVRG based methods attain very satisfactory performance
Detailed Experiments

Outage probability vs. no. of BS antennas

\[\gamma = 4 \]

OVRG based methods best overall

Outage probability vs. Threshold

Performance of PWM based approximation schemes degrades more gracefully
Conclusions

- Transmit Beamforming for Minimum Outage
 - Minimize outage probability subject to power constraints
 - No prior knowledge of distribution required at BS
 - Reformulate as stochastic optimization problem
 - Construct smooth surrogate of indicator function
 - Use simple stochastic approximation based algorithms for computing solutions based on user feedback
 - Channel estimates can be intermittent/delayed/stale
 - Works well in practice
 - PWM OVRG performs best overall
 - Well suited for massive MIMO systems
Thank you!