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Introduction

O Transmit Beamforming [Farrokhi et al. 1998, Bengtsson-Ottersten 2001,
Lopez 2002, Sidiropoulos et al. 2006]

» Exploit CSIT at base station (BS) for enhancing throughput in
multi-antenna systems

» Exact CSIT cannot be obtained in practice
» Accurately estimating CSI incurs large system overhead

» Alternative: Use robust beamformer design approach for dealing
with channel uncertainty

ad This talk:

» Model: Equally applicable to both point-to-point MISO and
single-group multicast beamforming scenarios
» Adopt outage based design criterion
*= Downlink channels modeled as random vectors

= Minimize probability of QoS dropping below a certain threshold s.t.
power constraints




Prior Art

d Worst-case design: [Karipidis et al. 2008, Zheng et al. 2008, Tajer et al. 2011,
Song et al. 2012, Huang et al. 2013, Ma et al. 2017]

» Metric: worst-case QoS w.r.t. all channel perturbations
» Can result in a very conservative design

O Outage-based design: [Xie et al. 2005, Vorobyov et al. 2008, Ntranos et al.
2009, Wang et al. 2014, He-Wu 2015, Sohrabi-Davidson 2016]

» Metric: QoS satisfies threshold with high probability
» Vary level of conservativeness by changing threshold
» Majority of prior art:

= (partial) knowledge of distribution required

= Approximation algorithms — centralized, can be computationally
demanding

» This talk:
= No explicit assumptions made on underlying distribution
» Use stochastic approximation to develop simple online algorithms
= Limited theoretical analysis, works well in simulations




Problem Statement

a Point-to-point scenario:

» BS equipped with N transmit antennas

» Received signal at user:

y =hws +n
> Model temporal variations of h as different realizations drawn

from an underlying distribution

= Example: Gaussian Mixture Model [Ntranos et al. 2009]
» Interpretation: Each Gaussian kernel corresponds to a channel state

» Formulation:

min { F(w) = Pr( WP <) |

W :={w c C"| |w(n)|* < P,,Vn € [N]}

——> Set of per-antenna power constraints




Problem Statement

ad Challenges:
» If distribution known apriori, no requirement for CSIT

» However, optimization problem may not be easy to solve
= NP-hard under GMM assumption [Ntranos et al. 2009]

» Hard to design algorithms for approximate minimization

= Evaluating cost function and its higher-order derivatives may require
computing cumbersome integrals

» Exact knowledge of distribution not available in practice
a Approach:
» Reformulate as stochastic optimization problem

: Hy, 2 :
v]‘f’ré%Pr(]w h|* < 7) & V{rrélilth[HﬂthPS’y}]

» Use stochastic approximation based algorithms for computing
solutions




Stochastic Approximation

O Benefits:
» Explicit knowledge of channel distribution not required
» Amenable for online implementation

» Naturally robust to intermittent/stale feedback from the user
= All channel vectors are statistically equivalent
» Feedback requirements are considerably relaxed

» Overall, well suited for massive MIMO systems

ad Major roadblock:

» Indicator function is discontinuous, non-convex

= Prevents direct application of stochastic approximation based
algorithms

» Our approach: Approximate indicator function via smooth
surrogates




Constructing smooth surrogates

d Transformation to real domain:

h := [R[h]”, 3M]7]T € RN and H = [ Rh]  3h] ] c R2NV %2

Q Sigmoid Approximation: «(vw;h) := 1+ exp ([ATW]2 — )
exp Wii2 —7%

O Smoothed Point-wise Max Approximation:

~ I:IT ~ |12 I:IT ~ 12
W@h%mw{al—ﬂ—llﬁ}ImX{y<L_| w2>}
Y 0<y<1 Y

Non-differentiable! Solution: Apply Nesterov Smoothing [Nesterov 2005]
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Problem Formulation

aQ Modified Problem:
» Replace indicator function by smooth surrogates to obtain
min {U(W) = Eg [u(w; fl)]}
wew
min {V(“) (W) :=Eg [U(“)(VV; fl)]}
wew
» Represent both via the prototypical optimization problem

min K, [f(x;8)]

X C RY: convex, compact and simple

& : random vector drawn from unknown probability distribution
with support set = C R

f: AxE-=>R
f(.; &) : non-convex, twice differentiable
> Minimize by sequentially processing stream of realizations {&, }72,




Algorithms

a Online Gradient Descent (OGD)
» Given realization &,, define f:(x) := f(x;&,;)
» Perform update

xtHD = Ty (x) — a, V£ (xM)),Vt € N

A Online Variance Reduced Gradient (OVRG) [Frostig et al. 2015]
» Streaming variant of SVRG [Johnson-Zhang 2013]
» Epoch based algorithm
> At each stage s € |5], define centering variable ys

» Gradient E¢[V f(ys; &)]is unavailable, so form surrogate via mini-
batching

gs ‘= k_ls Zie[k;s} vf@<y8>
» Perform update

x0T = T (x — oV (V1) = Vii(ye) + 80),V € [T




Baseline for comparison

Q Alternative approach

in Pr{lw”h|? < Pr[|lwh|* >
Inin Pr{lw™h[" <] <= max Pr{|w™h|" > 1]
» Maximize lower bound of objective function
» NP-hard to compute [Ntranos et al. 2009]

» Construct lower bound using moment information [He-Wu 2015]
= Entails solving non-trivial, non-convex problem
= Not suitable for online approximation

» Use Markov’s inequality to maximize upper bound [Ntranos et al.

20009]

Pr[[wh|? > 4] <y 'wPRw,Vw e W R := E[hh"]

= Problem formulation: | max wZ Rw
weW

= Approximately maximize in online setting using framework of
Stochastic SUM [Sanjabi-Razaviyayn-Luo 2016]
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Experiments

a Setup

» Algorithms: Sigmoid OGD & OVRG, PWM OGD & OVRG,
Online Markov Approximation (OM-App)

> Set smoothing parameter p = 1077
» Diminishing step-size for OGD, constant for OVRG and OM-App
» For OVRG

= Length of each stage 7" = 1000

= Mini-batch sizes: 80, s=1
kS = ka—la ks < 640

640, otherwise
» Fix maximum gradient budget for all methods

» Massive MIMO scenario (large no. of BS antennas)
= Power budget: -6dbW per antenna
» Generate channels using GMM with 4 kernels

= Equal mixture probabilities
= Mean of each kernel modeled using different LOS component
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lllustrative Example

N = 100 BS antennas, Ks =200, v =4

OM-App
Sigmoid OGD
> Sigmoid OVRG | |
%’ PWM OGD
5 PWM OVRG
=S
o
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# Gradients / Ks

OVRG based methods attain very satisfactory performance
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Detailed Experiments

P(outage)

Outage probability vs. no. of BS antennas
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OVRG based methods best overall

Outage probability vs. Threshold

N =100

Performance of PWM based approximation
schemes degrades more gracefully
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Conclusions

ad Transmit Beamforming for Minimum Outage
» Minimize outage probability subject to power constraints
» No prior knowledge of distribution required at BS
» Reformulate as stochastic optimization problem
» Construct smooth surrogate of indicator function

» Use simple stochastic approximation based algorithms for
computing solutions based on user feedback

= Channel estimates can be intermittent/delayed/stale

» Works well in practice
= PWM OVRG performs best overall

» Well suited for massive MIMO systems
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