Greed is good: Leveraging Submodularity for Antenna Selection in Massive MIMO

Aritra Konar

&

Nikos Sidiropoulos

Dept. of ECE, University of Virginia

51st Asilomar Conference on Signals, Systems & Computers
Oct. 29 – Nov. 1, 2017
Pacific Grove CA, USA

UNIVERSITY OF MINNESOTA Driven to Discover™

Introduction

□ Massive MIMO: [Marzetta 2010]

- Large number of transmit antennas deployed at BS for serving users sharing same time-frequency resource
- Orders of magnitude improvement in spectral and energy efficiency
- Simple signal processing techniques exhibit near-optimal performance
- > A leading physical-layer technology candidate for 5G

□ Challenge:

- Cost and hardware complexity of large-scale antenna systems
- Assigning one RF chain per antenna element infeasible
- This talk: Use antenna selection to reduce the number of RF chains at BS

Prior Art

Point-to-point case:

- Maximize energy efficiency [Li-Song-Debbah 2014]
 - Heuristic selection; no theoretical guarantees
- Maximize received SNR [Gkizeli-Karystinos 2014]
 - Optimally solvable in polynomial-time for ≤ 2 receive antennas

Multi-user case:

- Maximize downlink sum-rate capacity with fixed user power allocation [Gao et. al 2013]
 - Convex relaxation + rounding; no theoretical guarantees
 - Observed to work well empirically on certain measured massive MIMO channels
- This work: Same scenario + criterion, different algorithmic approach

Problem Scenario

□ Signal Model:

For a given subset of antennas $S \subseteq [M] := \{1, \dots, M\}$

$$\mathbf{y} = \sqrt{\rho} \mathbf{H}^{[\mathcal{S}]} \mathbf{x} + \mathbf{n}$$

 $\mathbf{y} \in \mathbb{C}^{K}$: received signal across all users $\mathbf{H}^{[S]} \in \mathbb{C}^{K \times N}$: subset of columns of $\mathbf{H} \in \mathbb{C}^{K \times M}$ $\mathbf{x} \in \mathbb{C}^{N}$: transmit signal vector across selected antennas with $\mathbb{E}\{\|\mathbf{x}\|^{2}\} = 1$ $\rho > 0$: transmit power budget $\mathbf{n} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{K})$

Antenna Selection Criterion: [Gao et. al 2013]

$$C(\mathbf{H}) = \max_{\substack{\mathbf{P} \in \mathcal{P}, \\ |\mathcal{S}| \le N}} \log_2 \det \left(\mathbf{I}_{|\mathcal{S}|} + \rho(\mathbf{H}^{[\mathcal{S}]})^H \mathbf{P} \mathbf{H}^{[\mathcal{S}]} \right)$$

 $\mathcal{P} := \{ \operatorname{diag}(\mathbf{p}) \mid \mathbf{p} >= \mathbf{0}, \mathbf{1}^T \mathbf{p} \le 1 \}$

Mixed-Integer problem, hard to solve

□ Problem "Simplification":

- Fix user power allocations; e.g., optimal solution without selection
- Obtain subset selection problem

$$\mathcal{S}^* = \arg \max_{|\mathcal{S}| \le N} \left\{ f(\mathcal{S}) := \log_2 \det \left(\mathbf{I}_{|\mathcal{S}|} + \rho(\mathbf{H}^{[\mathcal{S}]})^H \mathbf{P} \mathbf{H}^{[\mathcal{S}]} \right) \right\}$$

NP-hard! [Ko-Lee-Queyranne 1995]

□ Relax and Round: [Gao et. al 2013]

- Relax discrete variables, solve convex optimization problem, perform rounding to select antennas
 - Computationally expensive: $O(M^{3.5})$ [M is large in massive MIMO]
 - Hard to quantify sub-optimality of obtained solution
- Does there exist a more efficient and well-principled approach?

Definition:

 \succ A set function $f: 2^M \to \mathbb{R}$ is submodular if for any $\mathcal{A}, \mathcal{B} \subseteq [M]$

$$f(\mathcal{A} \cup \mathcal{B}) + f(\mathcal{A} \cap \mathcal{B}) \le f(\mathcal{A}) + f(\mathcal{B})$$

► Equivalently, for all $\mathcal{A} \subseteq \mathcal{B} \subseteq [M] \setminus m$:

$$f(\mathcal{A} \cup \{m\}) - f(\mathcal{A}) \ge f(\mathcal{B} \cup \{m\}) - f(\mathcal{B})$$

A diminishing returns property

► A set function is monotone if $\mathcal{A} \subseteq \mathcal{B} \implies f(\mathcal{A}) \leq f(\mathcal{B})$

Equivalently, for submodular functions,

 $f([M]) \ge f([M] \setminus m), \forall m \in [M]$

□ Proposition:

> Objective function of antenna selection criterion is monotone submodular

$$\succ \text{ Express } f(\mathcal{S}) = \log_2 \det \left(\mathbf{I}_{|\mathcal{S}|} + \rho(\mathbf{H}^{[\mathcal{S}]})^H \mathbf{P} \mathbf{H}^{[\mathcal{S}]} \right)$$
$$= \log_2 \det \left(\mathbf{I}_M[\mathcal{S}, \mathcal{S}] + \rho \tilde{\mathbf{G}}[\mathcal{S}, \mathcal{S}] \right) \qquad \tilde{\mathbf{G}} = \mathbf{H}^H \mathbf{P} \mathbf{H}$$
$$= \log_2 \det(\mathbf{\Sigma}[\mathcal{S}, \mathcal{S}]) \qquad \mathbf{\Sigma} := \mathbf{I}_M + \rho \tilde{\mathbf{G}}$$

 \succ Consider the Gaussian random vector $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ with differential entropy

$$h(\mathbf{z}) = rac{1}{2} \log_2 \det(\mathbf{\Sigma})$$
 (Up to additive constants)

▶ For a given subset of random variables $S \subseteq [M]$

$$h(\mathbf{z}^{[\mathcal{S}]}) = \frac{1}{2}\log_2 \det(\mathbf{\Sigma}[\mathcal{S},\mathcal{S}]) + c|\mathcal{S}|$$

Submodularity

□ Proof of submodularity:

- Differential entropy is submodular [Fujishige 1978, Kelmans-Kimelfeld 1983, Krause-Guestrin 2005, Shamaiah et al. 2010, Bach 2013]
- ▶ Given two arbitrary subsets $A, B \subseteq [M]$

 $I(\mathbf{z}^{[\mathcal{A} \setminus \mathcal{B}]}; \mathbf{z}^{[\mathcal{B} \setminus \mathcal{A}]} | \mathbf{z}^{[\mathcal{A} \cap \mathcal{B}]}) = h(\mathbf{z}^{[\mathcal{A}]}) + h(\mathbf{z}^{[\mathcal{B}]}) - h(\mathbf{z}^{[\mathcal{A} \cup \mathcal{B}]}) - h(\mathbf{z}^{[\mathcal{A} \cap \mathcal{B}]}) \geq 0$

 \succ Alternatively, given $\mathcal{A} \subseteq \mathcal{B} \subseteq [M] \setminus m$

 $h(\mathbf{z}^{[\mathcal{A} \cup \{m\}]}) - h(\mathbf{z}^{[\mathcal{A}]}) = h(z_m | \mathbf{z}^{[\mathcal{A}]}) \ge h(z_m | \mathbf{z}^{[\mathcal{B}]}) = h(\mathbf{z}^{[\mathcal{B} \cup \{m\}]}) - h(\mathbf{z}^{[\mathcal{B}]})$

□ Proof of monotonicity:

Required to show

$$f([M]) - f([M] \setminus m) = \log_2 \det(\mathbf{\Sigma}) - \log_2 \det(\mathbf{\Sigma}[[M] \setminus m, [M] \setminus m])$$

$$\geq 0, \forall \ m \in [M]$$

Follows as a consequence of Cauchy's Theorem of interlacing eigenvalues

Submodularity

□ Antenna selection problem:

Equivalent to maximizing a monotone submodular function subject to cardinality constraint on number of selected antennas

□ The upshot:

- Problem is well posed
 - Few antennas can possibly capture significant fraction of downlink capacity

The catch:

- Still need to perform subset selection! (NP-hard)
- Exploit submodularity to obtain bumper-to-bumper insurance?

Greed is good for Antenna Selection

Greedy Algorithm:

- \succ Start with $S_0 = \emptyset$
- ▶ At iteration $i \in [N] := \{1, \cdots, N\}$

$$\mathcal{S}_{i} = \mathcal{S}_{i-1} \cup \left\{ \arg \max_{m \notin \mathcal{S}_{i-1}} f(\mathcal{S}_{i-1} \cup \{m\}) - f(\mathcal{S}_{i-1}) \right\}$$

- ➢ Guaranteed (1 1/e)-factor approximation for all instances! [Nemhauser-Fisher-Wolsey 1978]
 - Independent of all system parameters
- Provably optimal approximation factor
 - Cannot be improved in polynomial-time [Nemhauser-Wolsey1978]

Greed is good for Antenna Selection

Running time:

- \succ Evaluate f(.) on O(MN) sets
- Cost of evaluation
 - Define $\mathcal{S}_i^{(v)} := \mathcal{S}_{i-1} \cup \{v\}, \forall v \notin \mathcal{S}_{i-1}, \forall i \in [N]$
 - Then

$$f(\mathcal{S}_i^{(v)}) = \log_2 \det \left(\mathbf{I}_K + \rho \tilde{\mathbf{H}}^{[\mathcal{S}_i^{(v)}]} (\tilde{\mathbf{H}}^{[\mathcal{S}_i^{(v)}]})^H \right)$$

 $ilde{\mathbf{H}} = \mathbf{P}^{1/2}\mathbf{H}$

> Overall complexity: $O(MNK^3)$

- \blacktriangleright Can be improved to: $O(MNK^2)$
 - Evaluating $f(\mathcal{S}_i^{(v)})$ requires rank-1 updates of the form

 $\tilde{\mathbf{H}}^{[\mathcal{S}_i^{(v)}]} (\tilde{\mathbf{H}}^{[\mathcal{S}_i^{(v)}]})^H = \tilde{\mathbf{H}}^{[\mathcal{S}_{i-1}]} (\tilde{\mathbf{H}}^{[\mathcal{S}_{i-1}]})^H + \tilde{\mathbf{h}}^{[v]} (\tilde{\mathbf{h}}^{[v]})^H$

Can be improved further via lazy evaluations [Minoux 1978]

Scales linearly with M in practice

Preliminary Results

BS with 20 antennas, 3 users, single sub-carrier, Rayleigh fading, 500 MC trials, $\rho = -2 dB$

N	3	6	9	12	15
Greedy	99.86	99.97	99.99	100	100
Random	60.15	70.94	77.69	84.85	90.54

Average approximation quality of obtained solutions (in %)

N	3	6	9	12	15
Greedy	94.29	98.60	99.67	100	100
Random	23.63	39.87	52.25	62.30	76.03

Worst-case approximation quality of obtained solutions (in %)

Greedy algorithm provides near-optimal solution in all cases

Experimental Setup:

Channel Model

BS equipped with ULA with following channel model

$$\mathbf{h}_{k}^{H} = \sqrt{\frac{N}{L_{m}}} \sum_{l=1}^{L_{m}} \alpha_{k}^{(l)} \mathbf{a}_{l} (\phi_{t_{k}}^{(l)})^{H}, \forall k \in [K]$$

$$\overset{\mathsf{Path loss}}{\longrightarrow} \alpha \mathbf{D} \sim \mathcal{U}[-\frac{\pi}{2}, \frac{\pi}{2}]$$

Setup

- After selection, design zero-forcing beamformer (ZFB) for reduced MIMO broadcast channel
- All results averaged across 500 MC trials

Results

Scenario with 144 Tx antennas, 12 users, 5-15 (randomly chosen) scattering paths per user, ho = 10 dB

Greedy selection + ZFB can indeed capture significant fraction of total downlink capacity using few RF chains (**50% with 11% of active antennas**)

Conclusions

Submodularity for Antenna Selection in Massive MIMO

- Greedy selection + ZFB works well at low complexity
- Extensions
 - Multiple receive antennas per user
 - Multiple sub-carriers
 - Partially connected switching architectures
- Paves the way for significant reduction of hardware complexity in large-scale antenna systems

Greed is good for Antenna Selection

Extensions:

- Multiple receive antennas per user
 - Straightforward; (1 1/e)-approximation factor
- Multiple sub-carriers

$$\max_{|\mathcal{S}| \le N} \left\{ F(\mathcal{S}) := \sum_{l=1}^{L} \log_2 \det \left(\mathbf{I}_{|\mathcal{S}|} + \rho(\mathbf{H}^{[\mathcal{S}]}(\ell))^H \mathbf{P}(\ell) \mathbf{H}^{[\mathcal{S}]}(\ell) \right) \right\}$$

- Monotonicity and submodularity preserved under non-negative sums; $(1-1/e)\mbox{-approximation factor}$
- Partially connected switching architectures
 - Define array partition $[M] = \bigcup_{b \in [B]} \mathcal{M}_b$ into B disjoint sub-arrays; allocate N_b RF chains per sub-array
 - Feasible selection sets:

 $\mathcal{I} = \{ \mathcal{S} \subseteq [M] : |\mathcal{S} \cap \mathcal{M}_b| \le N_b, \forall b \in [B] \}$

0.5-approximation factor [Fisher-Nemhauser-Wolsey 1978]

Sneak peek.....

N = 32 RF chains in a PC RF switching network with B = 32 sub-arrays of equal size, L = 32 sub-carriers, K = 12 users with 2 receive antennas, $\rho = 20$ dB

Greedy with lazy evaluations demonstrates significantly better performance-complexity tradeoff compared to convex relaxation; ZFB can still attain a significant portion of the sum-rate

