Mining Large Quasi-Cliques with Quality Guarantees from Vertex Neighborhoods

Aritra Konar

and Nicholas D. Sidiropoulos

Department of Electrical and Computer Engineering

KDD 2020 Research Track

Dense Subgraph Discovery

Problem: Given a graph, find list of "dense" subgraphs

A key primitive in graph mining

Detecting correlated genes [Tsourakakis *et al.* 2013]

Anomaly detection in e-commerce and social networks [Hooi *et al.* 2016]

Story identification in Twitter streams [Angel *et al.* 2012]

What is a dense subgraph?

Archetype: Cliques

NP-hard, restrictive definition

Other notions: Quasi-cliques

- Core decomposition [Seidman 1983]
- Average Degree [Goldberg 1984], k-Clique Densest Subgraph [Tsourakakis 2015]
- Optimal Quasi-clique [Tsourakakis et al. 2013]

□ Algorithms:

- Maximum-flow [Goldberg 1984, Tsourakakis 2015, Mitzenmacher et al. 2015]
- Semidefinite Relaxation [Cadena et al. 2016]
- Greedy [Charikar 2000, Batagelj-Zaversnik 2003, Tsourakakis et al. 2013, Tsourakakis 2015]
- Local-search [Tsourakakis et al. 2013]

Our approach

□ Look at vertex neighborhoods!

- List all triangles in graph [Schank 2005, Lapaty 2008, Suri-Vassilvitskii 2011]
- Compute the local clustering coefficient (LCC) of each vertex
 - LCC = edge density of one-hop neighborhood of v

Output neighborhood with highest LCC

But why do this?

Sneak peek...

Obtained a list of non-trivial (maximal) cliques and quasi-cliques without using any specialized methods!

Sneak peek...

- Comparison with triangle-densest subgraph [Tsourakakis 2015, Mitzenmacher *et al.* 2015]
 - Best neighborhood consistently outperforms dedicated algorithm!

	1	Max-Flo	WC	Ne	Neighborhood			
Graph	$ \mathcal{S} $	$\delta(\mathcal{S})$	$\tau(\mathcal{S})$	$ \mathcal{S} $	$\delta(\mathcal{S})$	$ au(\mathcal{S})$		
ARXIV-HEPPH	239	1	1	239	1	1		
arXiv-AstroPh	76	0.80	0.59	57	1	1		
ARXIV-CONDMAT	30	0.93	0.72	23	1	1		
ARXIV	146	0.49	0.25	74	1	1		
DBLP	114	1	1	114	1	1		
Facebook-A	195	0.79	0.54	50	0.94	0.85		
blogCatalog3	621	0.31	0.05	12	0.95	0.87		
Facebook-B	198	0.36	0.08	20	0.95	0.85		
loc-Gowalla	311	0.27	0.04	36	0.94	0.85		
WEB-STANFORD	684	0.17	0.02	53	1	1		
web-Google	66	0.85	0.64	54	0.93	0.84		
ppi-Human	361	0.42	0.14	81	0.93	0.89		
EMAIL-ENRON	388	0.19	0.02	14	0.93	0.82		
ROUTER-CAIDA	75	0.55	0.20	12	0.92	0.94		
Amazon	50	0.19	0.02	7	1	1		
sizo S odro do	ngity	$\delta(S)$	and tri	anglo	donsit	$v = \pi(S)$		

Why does this happen?

Observation:

- Recurring traits of real-world graphs:
 - High clustering coefficients [Watts-Strogatz 98]
 - Power-law degree distributions [Faloutsos (x3) 99, Barabasi-Albert 99]

□ Main question:

Do these properties imply that vertex neighborhoods harbor dense subgraphs of non-trivial sizes?

A note on clustering coefficients

□ Global clustering coefficient (GCC):

The probability that a path of length 2 has its endpoints closed

$$C_g = \frac{3(\# \text{ triangles in } \mathcal{G})}{(\# \text{ paths of length 2 in } \mathcal{G})}$$

Useful Result: [Gleich-Seshadhri 12]

Define probability distribution on vertices

$$p_v = \frac{(\# \text{ paths of length 2 centered at } v)}{(\# \text{ paths of length 2 in } \mathcal{G})}, \forall v \in \mathcal{V}$$

 \succ Then, $\mathbb{E}_p[C_v] = C_g$

A note on clustering coefficients

Recall:

 \succ LCC = edge density of one-hop neighborhood $\delta(\mathcal{N}_v)$

Corollary 1: $\mathbb{E}_p[\delta(\mathcal{N}_v)] = C_g$

Since $\Pr{\{\delta(N_v) \ge C_g\} > 0, \text{ high GCC implies the existence of a vertex neighborhood with high edge-density}}$

□ Corollary 2: $\operatorname{Var}[\delta(\mathcal{N}_v)] \leq C_g(1 - C_g)$

High GCC implies presence of many vertex neighborhoods with high edge-density

A note on clustering coefficients

Limitation:

High edge-density is necessary, but not sufficient for a neighborhood to be dense and of non-trivial size

Counter-example:

> Although $C_g = 1$, every neighborhood is simply an edge

Vertex neighborhoods as dense subgraphs

- Desiderata: Want to show existence of vertex neighborhood with
 - "High" edge-density
 - "large" size (degree)

Approach: Invoke the probabilistic method [Alon-Spencer 16]

- Define pair of "bad" events
 - (A) vertex sampled with probability \mathcal{P}_v has a neighborhood with "low" edge-density
 - (B) vertex sampled with probability p_v has a "small" degree

Suffices to show

$$\Pr\{A \cup B\} < 1 \Rightarrow \Pr\{A^c \cap B^c\} > 0$$

Vertex neighborhoods as dense subgraphs

□ Assumptions:

- \succ (A): \mathcal{G} obeys a power-law distribution with exponent 2
- \succ (B): \mathcal{G} has no missing degrees

Main theorem:

For every choice of
$$\beta \in \left(\frac{d_{\min}}{d_{\max}}, C_g\right)$$

there exists a vertex neighborhood of size $|\mathcal{N}_v| \ge \beta d_{\max}$, and edge-density

$$\delta(\mathcal{N}_v) \ge \frac{C_g - \beta}{1 - \beta}$$

Take-away: high GCC and power-law distributions imply the presence of dense neighborhood subgraphs

Vertex neighborhoods as dense subgraphs

Illustration: Facebook graph

Experiments

ts:	Graph	n	m	d_{\max}	C_g	\bar{C}
	ARXIV-HEPPH	$12,\!008$	112K	491	0.659	0.612
	ARXIV-ASTROPH	18,772	$198 \mathrm{K}$	504	0.318	0.677
	ARXIV-CONDMAT	$23,\!133$	$93,\!497$	279	0.264	0.633
	ARXIV	$86,\!376$	517K	$1,\!253$	0.560	0.678
	DBLP	317K	$1.05 \mathrm{M}$	343	0.306	0.632
	FACEBOOK-A	4,039	88,234	$1,\!045$	0.519	0.605
	blogCatalog3	$10,\!312$	333K	$3,\!992$	0.091	0.463
	Facebook-B	63,731	$817 \mathrm{K}$	$1,\!098$	0.148	0.221
	LOC-GOWALLA	196K	950K	14,730	0.023	0.237
	FLICKR	513K	$3.19 \mathrm{M}$	$4,\!369$	0.159	0.168
	WEB-STANFORD	$281 \mathrm{K}$	$2.31 \mathrm{M}$	$38,\!625$	0.008	0.598
	web-Google	875K	5.10M	$6,\!332$	0.055	0.514
	PPI-HUMAN	$21,\!557$	342K	$2,\!130$	0.119	0.207
	EMAIL-ENRON	$36,\!692$	183K	$1,\!383$	0.085	0.497
	ROUTER-CAIDA	192K	609K	$1,\!071$	0.061	0.157
	Amazon	334K	923K	549	0.205	0.397

□ What happens when GCC is small?

Experiments

Best neighborhood can still outperform a dedicated algorithm!

Experiments

---Clique returned by GreedyOQC [Tsourakakis *et. al* 2013] ---Max. degree ---GCC

Use neighborhoods as seed sets for local search [Tsourakakis et al. 2013]

			Vertex neighborhoods				
	Core decomposition		Avg.	degree	Edge density		
Graph	$ \mathcal{S} $	$\delta(\mathcal{S})$	$ \mathcal{S} $	$\delta(\mathcal{S})$	$ \mathcal{S} $	$\delta(\mathcal{S})$	
ARXIV-ASTROPH	57	1	81	0.75	57	1	
ARXIV	146	0.49	147	0.52	75	0.95	
blogCatalog3	447	0.4	1550	0.08	12	0.95	
Facebook-B	699	0.12	723	0.07	20	0.95	
loc-Gowalla	183	0.41	162	0.27	36	0.94	
WEB-STANFORD	387	0.29	694	0.17	71	0.95	
ROUTER-CAIDA	92	0.45	91	0.31	12	0.92	
Amazon	497	0.013	47	0.20	7	0.95	

□ Vertex neighborhoods are good seeds: Consistently yield seeds of considerably higher quality

Results: cliques

	Cliques					
	$ \mathcal{S} $					
Graph	NB	NB + LS	GreedyOQC			
ARXIV-HEPPH	239	239	239			
arXiv-AstroPh	57	57	57			
ARXIV-CONDMAT	23	26	26			
ARXIV	74	74	74			
DBLP	114	114	114			
Facebook-A	11	32	69			
blogCatalog3	10	29	31			
Facebook-B	12	25	25			
loc-Gowalla	15	28	16			
web-Stanford	53	53	14			
WEB-GOOGLE	25	43	44			
PPI-HUMAN	81	130	130			
EMAIL-ENRON	10	16	16			
ROUTER-CAIDA	9	15	6			
Amazon	7	7	5			

Neighborhoods are dense subgraphs: Largest neighborhood cliques are no smaller than those computed by baselines on 6/15 datasets

Vertex neighborhoods are good seeds: Local search + proper seeds produce can produce cliques of non-trivial sizes; competitive with greedyOQC

Results: quasi-cliques

	Quasi-cliques										
-	$ \mathcal{S} $				$\delta(\mathcal{S})$				$ au(\mathcal{S})$		
Graph	NB	NB + LS	Greed	У	NB	NB + LS	Greedy	NB	NB + LS	Greedy	
ARXIV-HEPPH	246	247	-		0.95	0.95	-	0.92	0.91	-	
arXiv-AstroPh	48	45	-		0.90	0.99	-	0.83	0.97	-	
ARXIV-CONDMAT	19	18	-		0.86	0.96	-	0.68	0.89	-	
ARXIV	75	60	-		0.95	0.98	-	0.92	0.94	-	
DBLP	105	-	-		0.95	-	-	0.92	-	-	
Facebook-A	50	53	118		0.94	0.98	0.97	0.85	0.94	0.92	
blogCatalog3	12	52	52		0.95	0.96	0.96	0.87	0.88	0.88	
Facebook-B	20	17	36		0.95	0.98	0.96	0.85	0.95	0.89	
loc-Gowalla	36	32	23		0.94	0.99	0.95	0.85	0.97	0.86	
WEB-STANFORD	71	68	16		0.95	0.99	0.96	0.89	0.97	0.88	
WEB-GOOGLE	54	48	48		0.93	0.99	0.99	0.84	0.98	0.98	
ppi-Human	81	-	-		0.93	-	-	0.89	-	-	
EMAIL-ENRON	14	12	22		0.93	0.98	0.96	0.82	0.95	0.89	
ROUTER-CAIDA	12	15	-		0.92	0.97	-	0.94	0.99	0.95	
Amazon	7	8	7		0.95	0.96	0.90	0.86	0.90	0.72	

Neighborhoods are dense subgraphs: Best neighborhood quasi-cliques are competitive in general

- Vertex neighborhoods are good seeds: Yield smaller quasi-cliques with higher triangle density compared to greedy
- Greedy can fail to capture spectrum of subgraphs

Conclusions

□ Neighborhoods are dense subgraphs:

- High clustering coefficients and power-law degree distributions imply that graphs harbor dense neighborhoods
- > In practice:
 - Neighborhoods can form large maximal cliques and quasi-cliques
 - Can serve as good seeds for local search
 - Combined approach yields state-of-the-art results
- Simple methods work very well!

□ Future Work:

- Additional theoretical analysis
- Extensions to weighted, bipartite, time-evolving networks?

Thank you!