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Dense Subgraph Discovery

a Problem: Given a graph, find list of “dense” subgraphs
> A key primitive in graph mining

a Applications:
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Detecting correlated genes
[Tsourakakis et al. 2013]
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What Is a dense subgraph?

a Archetype: Cliques
» NP-hard, restrictive definition

a Other notions: Quasi-cligues
» Core decomposition [Seidman 1983]

» Average Degree [Goldberg 1984], k-Cligue Densest Subgraph
[Tsourakakis 2015]

» Optimal Quasi-clique [Tsourakakis et al. 2013]

a Algorithms:
» Maximum-flow [Goldberg 1984, Tsourakakis 2015, Mitzenmacher et al. 2015]
» Semidefinite Relaxation [Cadena et al. 2016]

> Greedy [Charikar 2000, Batagelj-Zaversnik 2003, Tsourakakis et al. 2013,
Tsourakakis 2015]

» Local-search [Tsourakakis et al. 2013]




Our approach

Q Look at vertex neighborhoods!

» List all triangles in graph [Schank 2005, Lapaty 2008, Suri-Vassilvitskii
2011]

» Compute the local clustering coefficient (LCC) of each vertex
» LCC = edge density of one-hop neighborhood of v
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» Output neighborhood with highest LCC

a But why do this?




Sneak peek...
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O Obtained a list of non-trivial (maximal) cliques and quasi-cliques
without using any specialized methods!




Sneak peek...

O Comparison with triangle-densest subgraph [Tsourakakis 2015,
Mitzenmacher et al. 2015]

» Best neighborhood consistently outperforms dedicated algorithm!

Max-Flow Neighborhood
Graph S| 4(S) 7(S) S| 4(S) 7(S)
ARXIV-HEPPH 239 1 1 239 1 1
ARXIV-ASTROPH 76 0.80 0.59 57 1 1
ARXIV-CoONDMAT 30 093 0.72 23 1 1
ARXIV 146  0.49 0.25 74 1 1
DBLP 114 1 1 114 1 1
FACEBOOK-A 195 0.79 0.54 50 0.94 0.85
BLOGCATALOG3 621 0.31 0.05 12 0.95 0.87
FACEBOOK-B 198  0.36  0.08 20 0.95 0.85
LOC-GOWALLA 311 0.27  0.04 36 0.94 0.85
WEB-STANFORD 684 0.17 0.02 53 1 1
WEB-GOOGLE 66 0.8 0.64 54 0.93 0.84
PPI-HUMAN 361 0.42 0.14 81 0.93 0.89
EMAIL-FENRON 388 0.19 0.02 14 0.93 0.82
ROUTER-CAIDA 75 055 0.20 12 0.92 0.94
AMAZON 5  0.19 0.02 7 1 1

size |S|, edge-density §(S), and triangle-density 7(S)




Why does this happen?

d Observation:

» Recurring traits of real-world graphs:
= High clustering coefficients [Watts-Strogatz 98]
= Power-law degree distributions [Faloutsos (x3) 99, Barabasi-Albert 99]
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Q Main guestion:

» Do these properties imply that vertex neighborhoods harbor
dense subgraphs of non-trivial sizes?




A note on clustering coefficients

Q Global clustering coefficient (GCC):
» The probability that a path of length 2 has its endpoints closed

O — 3(# triangles in G)
9 = (# paths of length 2 in G)

Q Useful Result: [Gleich-Seshadhri 12]

» Define probability distribution on vertices

_ (# paths of length 2 centered at v)
Py = (# paths of length 2 in G) ;V vEY

» Then, E,[C,] = C,




A note on clustering coefficients

a Recall:
» LCC = edge density of one-hop neighborhood §(N,)

a Corollary 1:|E,[6(N,)] = C,

> Since Pr{é(N,) > C,} > 0, high GCC implies the existence of a
vertex neighborhood with high edge-density

a Corollary 2:|Var[§(N,)] < C,(1 — C,)

» High GCC implies presence of many vertex neighborhoods with
high edge-density




A note on clustering coefficients

d Limitation:

» High edge-density is necessary, but not sufficient for a
neighborhood to be dense and of non-trivial size

ad Counter-example:
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» Although C, = 1, every neighborhood is simply an edge
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Vertex neighborhoods as dense subgraphs

O Desiderata: Want to show existence of vertex neighborhood
with
» “High” edge-density
> “large” size (degree)

Q Approach: Invoke the probabilistic method [Alon-Spencer 16]

» Define pair of “bad” events

= (A) vertex sampled with probability P+ has a neighborhood with “low”
edge-density
= (B) vertex sampled with probability p,, has a “small” degree

» Suffices to show

Pr{AUB} <1=Pr{A°N B} >0
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Vertex neighborhoods as dense subgraphs

Q Assumptions:
> (A): G obeys a power-law distribution with exponent 2
> (B): G has no missing degrees

d Main theorem:
> For every choice of § € (M, Cg)

dmax

there exists a vertex neighborhood of size||Ny| > Bdmax!
and edge-density

SN > G2

O Take-away: high GCC and power-law distributions imply the
presence of dense neighborhood subgraphs




Vertex neighborhoods as dense subgraphs

Q lllustration: Facebook graph

Range of admissible degrees

1 >
|
|
|

0.8 I

I

I

= i

‘m 06 i
|

a |

o { i

© I

04 F & i

A g

?

02t @ Lower bound i

¢ LargestLCC ‘g [

—GCC %

D | il [l i |
100 150 200 250 300

Degree

13



Experiments

D D ataS ets Graph n m dinax Cy C
ARXIV-HEPPH 12,008 112K 491 0.659 0.612
ARXIV-ASTROPH 18,772 198K 504 0.318 0.677
ARX1v-CoNDMAT 23,133 93,497 279 0.264 0.633
ARXIV 86,376 517K 1,253  0.560 0.678
DBLP 317K 1.05M 343 0.306 0.632
FACEBOOK-A 4,039 88,234 1,045 0.519 0.605
BLOGCATALOG3 10,312 333K 3,992  0.091 0.463
FACEBOOK-B 63,731 817K 1,098 0.148 0.221
LOC-(GOWALLA 196K 950K 14,730 0.023 0.237
FLICKR 513K 3.19M  4.369 0.159 0.168
WEB-STANFORD 281K 2.31M 38,625 0.008 0.598
WEB-GOOGLE 875K 5.10M 6,332 0.055 0.514
PPI-HUMAN 21,557 342K 2,130 0.119 0.207
EMAIL-ENRON 36,692 183K 1,383  0.085 0.497
ROUTER-CAIDA 192K 609K 1,071 0.061 0.157
AMAZON 334K 923K 549 0.205 0.397

ad What happens when GCC is small?
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Experiments
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O Best neighborhood can still outperform a dedicated algorithm!




Experiments
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O Use neighborhoods as seed sets for local search [Tsourakakis et al.
2013]
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Comparing quality of seeds

Vertex neighborhoods

Core decomposition Avg. degree Edge density

Graph S| o(S) S| 4(S) S| 4(S)
ARXIV-ASTROPH 57 1 81 0.75 57 1
ARXIV 146 0.49 147  0.52 75 0.95
BLOGCATALOG3 447 0.4 1550 0.08 12 0.95
FACEBOOK-B 699 0.12 723  0.07 20 0.95
LOC-GOWALLA 183 0.41 162  0.27 36 0.94
WEB-STANFORD 387 0.29 694  0.17 71 0.95
ROUTER-CAIDA 92 0.45 91 0.31 12 0.92
AMAZON 497 0.013 47 0.20 7 095

O Vertex neighborhoods are good seeds: Consistently yield seeds of considerably higher quality
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Results: cliques

Cliques
S|
Graph NB NB + LS GreedyOQC
ARXIV-HEPPH 239 239 239
ARXIV-ASTROPH 57 57 57
ARXIV-CONDMAT 23 26 26
ARXIV 74 74 74
DBLP 114 114 114
FACEBOOK-A 11 32 69
BLOGCATALOG3 10 29 31
FACEBOOK-B 12 25 25
LOC-GOWALLA 15 28 16
WEB-STANFORD 53 53 14
WEB-GOOGLE 25 43 44
prPI-HUMAN 81 130 130
EMAIL-EENRON 10 16 16
ROUTER-CAIDA 9 15 6
AMAZON T 7 5

O Neighborhoods are dense subgraphs: Largest neighborhood cliques are no smaller than those
computed by baselines on 6/15 datasets

O Vertex neighborhoods are good seeds: Local search + proper seeds produce can produce
cligues of non-trivial sizes; competitive with greedyOQC
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Results: quasi-cliques

Quasi-cliques

S 3(S) 7(85)
Graph NB NB + LS Greedy NB NB + LS Greedy NB NB + LS Greedy
ARX1V-HEPPH 246 247 - 0.95 0.95 - 0.92 0.91 -
ARXIV-ASTROPH 48 45 - 0.90 0.99 - 0.83 0.97 -
ARXIV-CONDMAT | 19 18 - 0.86 0.96 - 0.68 0.89 -
ARXIV 75 60 - 0.95 0.98 - 0.92 0.94 -
DBLP 105 - - 0.95 - - 0.92 - -
FACEBOOK-A 50 53 118 0.94 0.98 0.97 0.85 0.94 0.92
BLOGCATALOGS3 12 H2 52 0.95 0.96 0.96 0.87 0.88 0.88
FACEBOOK-B 20 17 36 0.95 0.98 0.96 0.85 0.95 0.89
LOC-GOWALLA 36 32 23 0.94 0.99 0.95 0.85 0.97 0.86
WEB-STANFORD 71 68 16 0.95 0.99 0.96 0.89 0.97 0.88
WEB-GOOGLE 54 48 48 0.93 0.99 0.99 0.84 0.98 0.98
pPPI-HUMAN 81 - - 0.93 - - 0.89 - -
EMAIL-ENRON 14 12 22 0.93 0.98 0.96 0.82 0.95 0.89
ROUTER-CAIDA 12 15 - 0.92 0.97 - 0.94 0.99 0.95
AMAZON 7 8 7 0.95 0.96 0.90 0.86 0.90 0.72

U Neighborhoods are dense subgraphs: Best neighborhood quasi-cliques are competitive in
general

O Vertex neighborhoods are good seeds: Yield smaller quasi-cliques with higher triangle density
compared to greedy

0 Greedy can fail to capture spectrum of subgraphs
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Conclusions

O Neighborhoods are dense subgraphs:

» High clustering coefficients and power-law degree distributions
iImply that graphs harbor dense neighborhoods

» In practice:
= Neighborhoods can form large maximal cliques and quasi-cliques
= Can serve as good seeds for local search
= Combined approach yields state-of-the-art results

» Simple methods work very well!

a Future Work:
» Additional theoretical analysis
» Extensions to weighted, bipartite, time-evolving networks?
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Thank you!



