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Introduction:

 Densest-k-subgraph problem (DkS): Given an undirected graph,
find subgraph of size k£ with the max. number of induced edges

» Formulation: Let A € R’*" denote the (possibly weighted)
adjacency matrix of an undirected graph G = (V, £)

. = xT A }

st. 1'x =k

 NP-hard, difficult to approximate

* Our contributions: We propose a new convex relaxation for DkS
based on the Lovasz extension of submodular functions and devise
an ADMM algorithm for solving the problem at scale.

Prior Art;

+ State-of-the-art: [Bhaskara et al., 2010]. Provides O(n!/4+¢)
approximation guarantee in time n©/¢)

« Greedy Algorithm: [Feige et al. 2001]. Provides O(n/k) guarantee

« Semidefinite relaxation: [Srivastav-Wolf 1998, Feige-Langberg
2001, Bombina-Ames 2020]. Computationally expensive.

 Low-rank Matrix approximation: [Papailiopoulos et al. 2014].
Solve DkS with low (constant) rank approximation of adjacency
matrix, provides data-dependent quality guarantees.
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Main idea:
vol(S) = » d, where d, = degree of vertex u
, ucS
s =2e(S) +  el(S)
# edges with 2 # edges with 1
endpoints in S endpointin S

* Re-arranging: 2e¢5(S) =vol(S) —e1(5),VS CV
Equiv%ently

\ 4

XTA.X — dTX — Z(u,fu)ES |':U’U, — ZCU‘,V X & {0, 1}n

* Equivalent reformulation of DkS:

max. dfx — L., — X

xe{0,1}n Z ‘ “ b
(u,v)e€

st. 11x=k

* Relax discrete constraints to obtain convex problem

 Main claims:
(a) Cost function — f of DKS is submodular
(b) Cost function of relaxed problem is the Lovasz extension of — f
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Experimental Setup:

 Use L-ADMM to solve L-relaxation; final solution
obtained by
(1) Projection onto discrete set
(1) Use Frank-Wolfe algorithm [Frank-Wolfe 1950] for
last mile refinement

 Baselines:
(1) Greedy algorithm [Feige et al. 2001]
(1) Truncated Power Method [Yuan-Zhang 2013]
(1) Rank-1 binary matrix principal component (larger
ranks incur higher complexity) [Papailiopoulos et al. 2014].
(Iv) Edge-density upper-bound

 Performance metric:
Edge-density = (# of induced edges)/(# edges In k clique)

Submodularity:

- Given asetofelementsY = |n| :={1,---
function f : 2V — R
« Submodularifforall AC B CV\{e},

@

F(AU {e}) = F(A)

,n}, consider a set-

+ @
{e}

> F(BU{e})— F(B)

[ l.e., diminishing returns ]

 Link to convexity: every submodular function possesses a
continuous, convex extension (the Lovasz extension) [Lovasz
1983]. Can be viewed as the tightest convex under-estimator
of f (in a certain sense).

Algorithm:

 EXxpress relaxed problem as:

min {ox) + h(z) |

Bl x—z

(

—di'x, xec[0,1]]",11x=k

+00, 0.W.

\

where

h(z) =) |ze| = |2
e=1

 Apply Linearized ADMM [Condat 2014]

 L-ADMM updates:
k+1

= prox, ,, (I, — ppL)x* — ppB(z" — u®))

" Require computing X
proximal operators of a

_convex function Zk‘l‘l = Prox,, (BTXk—I-l 4+ uk)
L — gk - BT xh+! _ gkl

u

 X-update: Bisection search
 z-update: Soft-thresholding operator
» Convergence rate: Same as standard ADMM! O(1/k)

Results:
Datasets from SNAP [Krevl-Leskovec 2015]
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Graph n m Network Type

POLBLOG 1,224 16,714 Social

FACEBOOK 4,039 88,234 Social

PPI-HUMAN 21,57 342K  DBiological >
LOoC-GOwALLA 196K 950K  Social % ’
WEB-GOOGLE 875K  5.10M Web oo

YoOUTUBE 1.1M 2.9M  Social =0

AS-SKITTER 1.7TM 12M  Autonomous Systems W

WIKI-TALK 2.4M oM Communications
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Our approach attains state-of-the-art performance

Conclusions:

* Proposed a new convex relaxation for DkS and a
scalable ADMM algorithm for solving It.

« Attains state-of-the-art performance on real graphs.

* Future work: data-dependent performance guarantees,
extension to higher-order motifs.
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