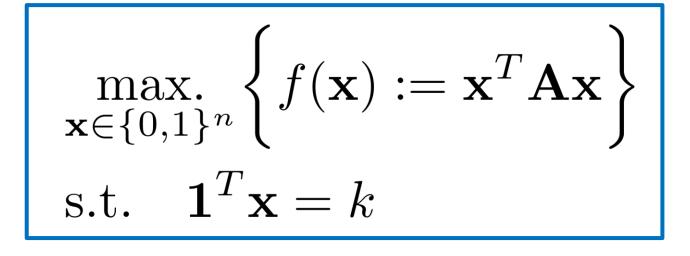


EXPLORING TH

Introduction:

- Densest-k-subgraph problem (DkS): Given an un find subgraph of size k with the max. number of inc
- Formulation: Let $\mathbf{A} \in \mathbb{R}^{n imes n}_+$ denote the (possibly \mathbb{R}^n_+ adjacency matrix of an undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$



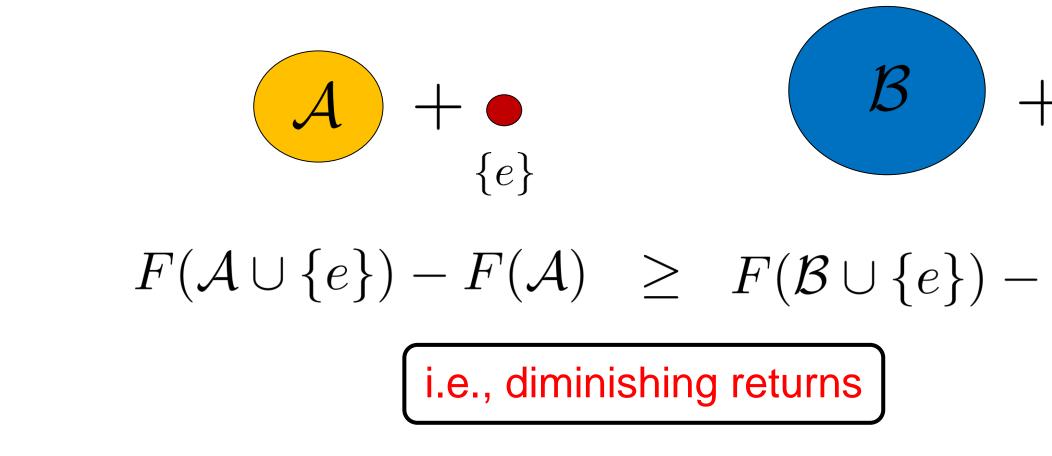
- **NP-hard, difficult to approximate**
- Our contributions: We propose a new convex relax based on the Lovasz extension of submodular funct an ADMM algorithm for solving the problem at scale

Prior Art:

- State-of-the-art: [Bhaskara et al., 2010]. Provides approximation guarantee in time $n^{O(1/\epsilon)}$
- Greedy Algorithm: [Feige et al. 2001]. Provides O(
- Semidefinite relaxation: [Srivastav-Wolf 1998, Fei 2001, Bombina-Ames 2020]. Computationally exper
- Low-rank Matrix approximation: [Papailiopoulos Solve DkS with low (constant) rank approximation o matrix, provides data-dependent quality guarantees

Submodularity:

- Given a set of elements $\mathcal{V} = [n] := \{1, \dots, n\},\$ function $f: 2^{\mathcal{V}} \to \mathbb{R}$
- Submodular if for all $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{V} \setminus \{e\}$,



Link to convexity: every submodular function poss continuous, convex extension (the Lovasz extensio 1983]. Can be viewed as the tightest convex und of f (in a certain sense).

HE SUBGRAPH DENSITY-SIZE TRA	
Aritra Konar and Nicholas	
University of Virginia, Charlo ⁻	
	Main idea:
indirected graph, duced edges weighted) \mathcal{E}	w = v = v = v = v = v = v = v = v = v =
	• Re-arranging: $2e_2(\mathcal{S}) = \operatorname{vol}(\mathcal{S}) - e_1(\mathcal{S})$ Equivalently
axation for DkS	• Equivalent reformulation of DkS:
ctions and devise le.	$\max_{\mathbf{x} \in \{0,1\}^n} \mathbf{d}^T \mathbf{x} - \sum_{(u,v) \in \mathcal{E}} x $ s.t. $1^T \mathbf{x} = k$
	Relax discrete constraints to obtain cor
$O(n^{1/4+\epsilon})$ O(n/k) guarantee	$ \min_{\mathbf{x} \in [0,1]^n} - \mathbf{d}^T \mathbf{x} + \sum_{(u,v) \in \mathcal{E}} $ s.t. $1^T \mathbf{x} = k $
eige-Langberg ensive. <i>et al.</i> 2014]. of adjacency	 Main claims: (a) Cost function - f of DkS is submod (b) Cost function of relaxed problem is f
	Algorithm:
consider a set-	• Express relaxed problem as: $\min_{\mathbf{B}^T \mathbf{x} = \mathbf{z}} \left\{ e^{\mathbf{x} \cdot \mathbf{x}} \right\}$
	where $g(\mathbf{x}) = \begin{cases} -\mathbf{d}^T \mathbf{x}, & \mathbf{x} \in [0, 1]^n, 1^T \mathbf{x} = k \\ +\infty, & \text{o.w.} \end{cases}$
$\{e\}$ $F(\mathcal{B})$	• Apply Linearized ADMM [Condat 2014] • L-ADMM updates: Require computing proximal operators of a convex function $\mathbf{z}^{k+1} = \operatorname{prox}_{g/\mu}(\mathbf{B})$
ssesses a ion) [Lovasz	• x-update: Bisection $\mathbf{z}^{k+1} = \operatorname{prox}_{\rho h} (\mathbf{B} \\ \mathbf{u}^{k+1} = \mathbf{u}^k + \mathbf{B}^T \mathbf{x}$
nder-estimator	 z-update: Soft-thresholding operator Convergence rate: Same as standard

RADE-OFF VIA THE LOVASZ EXTENSION

las D. Sidiropoulos

narlottesville, USA

$$\int_{\mathcal{S}} d_u$$
 where $d_u = \text{degree of vertex } u$

$$e_1(\mathcal{S})$$

les with 2 oints in ${\cal S}$ # edges with 1 endpoint in ${\cal S}$

$$-e_1(\mathcal{S}), \forall \mathcal{S} \subseteq \mathcal{V}$$

$$\mathbf{x}_{v,v)\in\mathcal{E}} |x_u - x_v|, \forall \mathbf{x} \in \{0,1\}^n$$

$$\sum_{(u,v)\in\mathcal{E}} |x_u - x_v|$$

ain convex problem

$$\sum_{(u,v)\in\mathcal{E}} |x_u - x_v|$$

ıbmodular em is the Lovasz extension of -f

$$\min_{\mathbf{x}=\mathbf{z}} \left\{ g(\mathbf{x}) + h(\mathbf{z}) \right\}$$

$$T_{\mathbf{x}} = k$$

$$h(\mathbf{z}) = \sum_{e=1}^{m} |z_e| = \|\mathbf{z}\|_1$$

2014]

$$g_{\mu}((\mathbf{I}_{n} - \mu\rho\mathbf{L})\mathbf{x}^{k} - \mu\rho\mathbf{B}(\mathbf{z}^{k} - \mathbf{u}^{k}))$$

$$= \mathbf{B}^{T}\mathbf{x}^{k+1} + \mathbf{u}^{k}$$

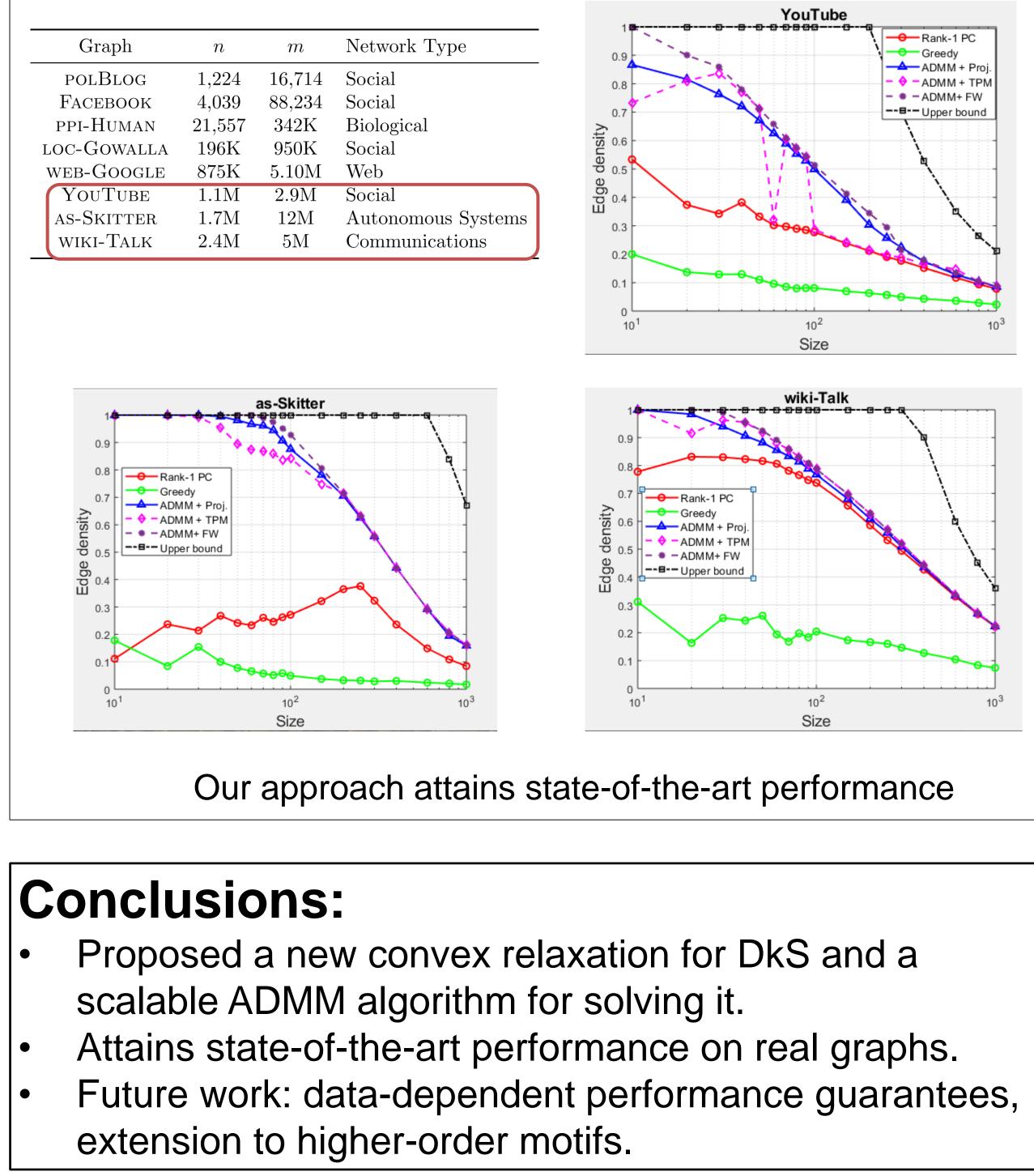
$$= \mathbf{B}^{T}\mathbf{x}^{k+1} - \mathbf{z}^{k+1}$$

rator andard ADMM! O(1/k)

Experimental Setup:

- obtained by last mile refinement
- **Baselines**:
- **Performance metric:**

Results:



Use L-ADMM to solve L-relaxation; final solution

(i) Projection onto discrete set

(ii) Use Frank-Wolfe algorithm [Frank-Wolfe 1950] for

(i) Greedy algorithm [Feige *et al.* 2001]

(ii) Truncated Power Method [Yuan-Zhang 2013] (iii) Rank-1 binary matrix principal component (larger ranks incur higher complexity) [Papailiopoulos et al. 2014]. (iv) Edge-density upper-bound

Edge-density = (# of induced edges)/(# edges in k clique)

Datasets from SNAP [KrevI-Leskovec 2015]