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Introduction:
• Densest-k-subgraph problem (DkS): Given an undirected graph,                     

find subgraph of size     with the max. number of induced edges

• Formulation: Let                    denote the (possibly weighted) 

adjacency matrix of an undirected graph 

• NP-hard, difficult to approximate

• Our contributions: We propose a new convex relaxation for DkS

based on the Lovasz extension of submodular functions and devise 

an ADMM algorithm for solving the problem at scale. 

Prior Art:

• State-of-the-art: [Bhaskara et al., 2010]. Provides           

approximation guarantee in time

• Greedy Algorithm: [Feige et al. 2001]. Provides              guarantee 

• Semidefinite relaxation: [Srivastav-Wolf 1998, Feige-Langberg

2001, Bombina-Ames 2020]. Computationally expensive.

• Low-rank Matrix approximation: [Papailiopoulos et al. 2014].

Solve DkS with low (constant) rank approximation of adjacency 

matrix, provides data-dependent quality guarantees.

Main idea:

• Re-arranging:

• Equivalent reformulation of DkS:

• Relax discrete constraints to obtain convex problem

• Main claims: 

(a) Cost function        of DkS is submodular

(b) Cost function of relaxed problem is the Lovasz extension of 

Submodularity:
• Given a set of elements                                          consider a set-

function                                        

• Submodular if for all  

• Link to convexity: every submodular function possesses a 

continuous, convex extension (the Lovasz extension) [Lovasz

1983]. Can be viewed as the tightest convex under-estimator 

of    (in a certain sense).  

Results: 
Datasets from SNAP [Krevl-Leskovec 2015]

Conclusions:
• Proposed a new convex relaxation for DkS and a 

scalable ADMM algorithm for solving it.

• Attains state-of-the-art performance on real graphs.

• Future work: data-dependent performance guarantees, 

extension to higher-order motifs.

Experimental Setup:
• Use L-ADMM to solve L-relaxation; final solution 

obtained by 

(i) Projection onto discrete set

(ii) Use Frank-Wolfe algorithm [Frank-Wolfe 1950] for     

last mile refinement 

• Baselines:

(i) Greedy algorithm [Feige et al. 2001]

(ii) Truncated Power Method [Yuan-Zhang 2013]

(iii) Rank-1 binary matrix principal component  (larger 

ranks incur higher complexity) [Papailiopoulos et al. 2014].

(iv) Edge-density upper-bound

• Performance metric: 

Edge-density = (# of induced edges)/(# edges in k clique)
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Algorithm:
• Express relaxed problem as:

• Apply Linearized ADMM [Condat 2014]

• L-ADMM updates:

• x-update: Bisection search

• z-update: Soft-thresholding operator

• Convergence rate: Same as standard ADMM!  
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Our approach attains state-of-the-art performance


