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Introduction
• Goal: Devise a distributed sensing framework for compressing and 

reconstructing finite-length autocorrelation sequences of WSS 

processes.

i. Employ network of sensors to transmit randomly filtered, 

single-bit quantized power measurements to fusion center.

ii. Reconstruct autocorrelation sequence at fusion center from 

binary power measurements.

• Contributions:

i. Maximum-Likelihood (ML) based reconstruction scheme 

proposed, vs. min. norm in previous work. ML is statistically 

more efficient, robust, but looks hard to solve.

ii. Exploiting special problem structure, it is shown that the 

problem possesses hidden convexity, enabling optimal 

estimation. Extends hidden convexity result of previous 

work to ML case.

Signal Model

• Finite autocorrelation sequence of length     can be represented as

where                  and                                    has ones on the       diagonal 

and zeros elsewhere.

• If                    is positive semidefinite,Toeplitz-Hermitian and banded with 

bandwidth 

• Exploiting the structure of       , we have

where                                       and

• is positive semidefinite and Toeplitz-Hermitian

System Model

• Network of      scattered sensors with limited communication capabilities

• Sensor      equipped with FIR filter with random impulse response

• At       sampling instance, acquire data sample vector

• Obtain random linear projections                        with average power 

• Soft power estimates: 

• Error due to insufficient sample averaging:

• Errors approximately Gaussian by CLT, i.e., 

• One bit quantization:

• Errors may result in flipped bits

Simulation Results
• MA(7) model, M = 200 sensors, K = 30, 80 sensors transmit bm=1, 

random errors resulted in 52 bit flips (26% of measurements), true model 

order known at FC, 500 Monte-Carlo trials.

• Very satisfactory performance, ML formulation robust to bit flips

Future Work:

• Using CRLB for threshold design

• Active sensing version

Final Formulation

• Equivalent to the previous formulation.

• Fewer variables, hence more computationally 

efficient.

• Construct sequence                                    

followed by spectral factorization to obtain 

optimal rank-1 solution. 
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Problem Formulation
• Find     from               utilizing Gaussian distribution of                in a 

Maximum-Likelihood (ML) formulation 

• Define 

• Likelihood function:

• ML formulation:
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Possesses 
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Problem Reformulation
• Note

where 

• Define               . Then,

• Rank-1 constraint is redundant [Alkire and Vandenberghe, 2002]

• High rank solution can always be converted to rank-1 solution with same 

cost via spectral factorization.

• Solution non-unique (i.e.,    is non-identifiable) but all equivalence 

classes define the same autocorrelation sequence.

• Hence, original ML formulation can be solved to global optimality.          

[Mehanna et al., 2013]

Relax


