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Abstract—Quadratically constrained quadratic programs
(QCQPs) have a wide range of applications in signal processing
and wireless communications. Non-convex QCQPs are NP-hard
in general. Existing approaches relax the non-convexity using
semi-definite relaxation (SDR) or linearize the non-convex part
and solve the resulting convex problem. However, these techniques
are seldom successful in even obtaining a feasible solution when
the QCQP matrices are indefinite. In this letter, a new feasible
point pursuit successive convex approximation (FPP-SCA) algo-
rithm is proposed for non-convex QCQPs. FPP-SCA linearizes
the non-convex parts of the problem as conventional SCA does,
but adds slack variables to sustain feasibility, and a penalty to
ensure slacks are sparingly used. When FPP-SCA is successful in
identifying a feasible point of the non-convex QCQP, convergence
to a Karush-Kuhn-Tucker (KKT) point is thereafter ensured.
Simulations show the effectiveness of our proposed algorithm
in obtaining feasible and near-optimal solutions, significantly
outperforming existing approaches.

Index Terms—Feasible point pursuit, linearization, multicast
beamforming, non-convex QCQP, semi-definite relaxation, suc-
cessive convex approximation.

I. INTRODUCTION

Q UADRATICALLY constrained quadratic programs
(QCQPs) are an important class of optimization prob-
lems that have a wide spectrum of applications ranging

from transmit beamforming in wireless networks, to portfolio
risk management in financial engineering [1], [2]. A QCQP can
be expressed as
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where , i.e., positive semi-definite, and
are Hermitian matrices for all . In the special
case when for all , the QCQP be-
comes a convex optimization problem which can be efficiently
solved to optimality using interior point methods [3]. For gen-
eral indefinite , this problem is non-convex and NP-hard [4],
except for special cases, such as when [5]–[9].
Several methods have been proposed to approximate non-

convex QCQPs, including (a) the (prevailing) semi-definite re-
laxation (SDR) approach [3]; (b) the reformulation linearization
technique (RLT) [10], [11]; and (c) successive convex approxi-
mation (SCA) [12]–[15]. RLT consists of a reformulation step
and a linearization step. The reformulation step creates redun-
dant nonlinear constraints involving pairwise product combina-
tions of the individual scalar variables, by multiplying different
constraint pairs. The linearization step then substitutes a con-
tinuous variable for each distinct product of variables. The re-
sulting convex optimization problem is solved to obtain an ap-
proximate solution of the non-convex problem. The main issue
with RLT is that the solution of the linear program is seldom fea-
sible for the non-convex problem. Furthermore the size of the
linear program approximation is much larger than the original
problem, thereby making it computationally involved.
The SCA approach is a more general scheme to deal with

non-convex problems, and its application to non-convex
QCQPs is sometimes called the convex-concave approach
[4]: each quadratic term is separated into convex and concave
parts, and the latter is replaced by a convex (usually linear)
approximation around a feasible point. The resulting convex
problem is solved to obtain the next iterate, which also serves
as the approximation point for the next iteration. Scutari et al.
recently proposed a parallel and distributed SCA framework to
obtain stationary points for non-convex optimization problems
[15]. The algorithm starts from an initial feasible point, the
non-convex constraints are approximated by a strictly convex
function around this point, and the resulting convex problem
is solved to obtain the next iterate. This procedure is repeated
until convergence to a stationary point.
The drawback with approaches (b) and (c) is that they need

a feasible point as initialization, which is difficult to obtain in
general. Constraint approximation about a feasible point yields
a nonempty set that contains at least the given point, whereas
constraint approximation about an infeasible point tends to yield
an empty set, even if the original problem is feasible. Existing
convergence results for SCA depend on a feasible initialization,
e.g., [12].
The most popular among the above is the SDR approach [1],

[3], where the original problem is reformulated by introducing
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and solving the semi-definite program (SDP)
obtained after relaxing the rank-1 constraint.

(2)

Because of the rank relaxation, the solution to gives a lower
bound on the optimal value of the cost function of . Note
that the SDR is the Lagrange bi-dual of . If the solution

to problem is rank-1, the optimal solution to
is the principal eigenvector of , scaled by the square root of
themaximum eigenvalue of ; otherwise, randomization tech-
niques are used [1]. If the matrices are all negative
semidefinite, then any randomly generated point can be scaled
up to satisfy the constraints of the QCQP ; finding a feasible
solution using randomization is easy in this case, and the chal-
lenge is to find one that is close to optimum, see [1], [16].
In the general setting where are all indefinite, or

when one deals with two-sided positive semidefinite constraints
such as in [17], SDR with randomization often fails to find a
point that satisfies the constraints in . That is why it is impor-
tant to develop an alternate approach (instead of SDR followed
by randomization) that has a high probability of finding a fea-
sible solution to the NP-hard QCQP , when one exists.
In this letter we propose an iterative algorithm for obtaining

good feasible solutions to general QCQPs, where we approx-
imate the feasible region through a linear restriction of the
non-convex parts of the constraints. In order to guarantee feasi-
bility of the modified problem, slack variables are added, and a
penalty is used to ensure that slacks are sparingly used. The solu-
tionof the resultingoptimizationproblem is thenused tocompute
a new linearization, and the procedure is repeated until conver-
gence. The proposedFeasible Point Pursuit - SuccessiveConvex
Approximation (FPP-SCA) algorithm differs from the conven-
tional SCA approach [12]–[14] in that the latter requires the
starting point to be in the feasible region of the original problem.
Finding a feasible point is easy in some cases, such as when all
the constraints involve negative semi-definite

, as considered in [14]. For generalQCQPs, however,finding
an initial feasible point is hard. The performance of the proposed
algorithm is compared with the conventional SDR followed by
randomization, and simulations show that the proposed algo-
rithm attains a feasible solution for a much larger percentage of
problem instances. Furthermore, the feasible solution obtained
using the proposed algorithm is much closer to the SDR lower
bound than SDR followed by randomization.

II. THE FPP-SCA APPROACH

Problem may or may not be feasible, and establishing
(in)feasibility is generally NP-hard. When infeasible, one may
instead seek a compromise that minimizes constraint violations
in some sense - this is common in engineering applications. In
order to account for potential infeasibility, consider adding slack
variables and a slack penalty to

(3)

where trades off the original objective function and the slack
penalty term, and can be any vector norm. Problem is
always feasible, and if is an optimal solution of and
it so happens that , then is an optimal solution of ;
else using the norm of in (which reduces to the sum
of the slacks, due to the non-negativity constraints) promotes
sparsity in terms of constraint violations. The difficulty though
is that problem remains non-convex and NP-hard in general.
Successive convex approximation (SCA). Using eigen-de-

composition, the matrix can be expressed as
, where and (negative semi-definite).

For any , . Expanding
the left-hand side of the inequality, we obtain

(4)

Therefore, using the linear restriction (4) around the point ,
we may replace the -th (non-convex) constraint of with
the convex constraint

(5)

This leads us to propose the following algorithm.

Algorithm 1 Feasible Point Pursuit Successive Convex
Approximation (FPP-SCA) Algorithm

Initialization: Set and randomly generate an initial
point .

Repeat
1) Solve

(6)

2) Let denote the optimal obtained by solving at
the -th iteration, and set .

3) Set .

until convergence.

Some important remarks and claims are in order.
• We first relaxed the constraints in by adding slacks,
then tightened the relaxed constraints via partial linear
restriction of their non-convex parts. We could instead
first tighten the original constraints (risking turning a
feasible original problem into an infeasible one) then relax
by adding slacks to make the restriction feasible–the net
result turns out being in both cases, and it is always
feasible.

• FPP-SCA yields a non-increasing cost sequence, i.e.,
the optimal cost of is non-increasing in . This
is because the cost function is independent of ,
and the solution of the k-th iteration is also feasible
for the -th iteration. To see this, note that

is the optimal solution of at the -th
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iteration, so it satisfies the restriction

, and
therefore a fortiori also the non-convex quadratic con-
straint .
Looking at the corresponding constraint at the
next iteration,

, plugging in

we obtain ,
i.e., feasibility of for the -th iteration of

implies feasibility of for the same for the
-th iteration of .

• Problem is convex and can be easily formulated as
a second-order cone program (SOCP). Worst-case com-
plexity of solving is for
SDR1. FPP-SCA usually takes just a few iterations to
converge.

• FPP-SCA can be run using different starting points , and
the best solution can be taken. Simulations suggest that
SDR can provide a good initialization for FPP-SCA, if the
extra complexity of SDR is acceptable. Otherwise random
initialization(s) can be used.

• We propose using to force the slack variables to-
ward zero, thereby pushing the iterates towards the feasible
region of when this is non-empty. Higher also helps
ensure that if a feasible point of is found, subsequent
iterates will remain in the feasible region of , although
there are no analytical guarantees for this. Note that the
main advantage of FPP-SCA over conventional SCA is
the ability to find a feasible point with high probability.
Once the slacks are all 0, one can simply switch to con-
ventional SCA without the slacks. Our simulations show
that the subsequent iterates are almost identical between
these two schemes (with or without the slack variables).

• If FPP-SCA converges, it converges to a KKT point for
problem , according to Beck et al. [12]. If the converged
slack variables turn out being all zero, then it is easy to
show that the remaining variables satisfy the KKT condi-
tions for the original problem .

Illustrative example. To get a better understanding of the ap-
proximations used in the FPP-SCA algorithm and how the solu-
tion evolves after each iteration, Fig. 1 considers a setup in

with , where , ,

, , ,

and . Note that and are negative semidefinite,
whereas is positive semidefinite. The ellipsoids that corre-
spond to for are plotted in red in Fig. 1,
while the ellipsoid for is plotted in green. Two different
initializations for are considered, both are chosen with rela-
tively large scale so that the first two constraints of the QCQP
are satisfied, but not the third one. Therefore, only the slack
variables that correspond to the third constraint can be nonzero.
The FPP-SCA algorithm is run for 3 iterations using ,
and the figure shows the solution after each iteration. The point

1The primal-dual method converges in iterations [18, Theorem 5.1],
each requiring , where is the number of equality constraints, and
the PSDmatrix is [18, Section 7.6]. To convert inequalities to
equalities, introduce auxiliary nonnegative variables and

equalities, yielding per iteration.

Fig. 1. Illustration of FPP-SCA algorithm in , : 3 iterations of suc-
cessful (left) and unsuccessful (right) FPP (a) Successful (b) Unsuccessful.

about which the non-convex constraints are linearized in each
iteration is denoted by a blue cross, while the solution obtained
in each iteration is denoted by a blue star. For the non-convex
constraints that correspond to , the linear approxima-
tion (restriction) of each ellipsoid at each iteration is plotted in
a dashed red line. The (extended) ellipsoid after adding the nec-
essary slack to the convex constraint , in order to obtain
a feasible solution for , is plotted in dashed green.
As shown in Fig. 1, for the first initialization point (case (a)

- left panels), a feasible solution to the original problem is ob-
tained after the second iteration, and the optimum solution is
achieved after 3 iterations. On the other hand, for the second ini-
tialization point (case (b) - right panels), the algorithm is stuck
at a point that is not feasible for the original problem. Note that
FPP-SCA converges in both cases, albeit to an undesirable point
in the second case.

III. NUMERICAL RESULTS

To test the performance of the FPP-SCA algorithm, a problem
with complex dimensions is considered, with

. The entries of the matrices are ran-
domly and independently generated from a complex Gaussian
distribution (with zero-mean and variance 2), then symmetrized.
An initial point is randomly generated, and the values of

are randomly generated from a Gaussian distribution
. If , the ma-

trix and are multiplied by to get inequalities. The
matrix is set to the identity. To solve the SDR and the
SCA , the modeling language YALMIP [19] is used and the
generic conic programming solver SeDuMi [20] is chosen as the
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TABLE I
RESULTS USING THE SDR APPROACH FOR

TABLE II
RESULTS USING THE FPP-SCA APPROACH FOR

TABLE III
RESULTS USING THE SDR APPROACH FOR

TABLE IV
RESULTS USING THE FPP-SCA APPROACH FOR

solver for both approaches. The results reported in Tables I–IV
are averaged over 1000 Monte-Carlo simulation runs.
In Table I, we consider solving the QCQP using SDR

followed by a randomization (and scaling) technique that is sim-
ilar to the one used in [17], if the solution to is not rank-1.
For the randomization step, random points are generated
for each simulation run. The table reports the average number
of simulation runs where a rank-1 solution was obtained, the
average number of simulation runs where no feasible solution
was obtained after the randomization step, the average number
of simulation runs where a feasible solution was obtained with
randomization, and the average difference between the solution
obtained with randomization and the lower bound obtained from
the (higher-rank) solution of . The table shows that as in-
creases (i.e., the set of constraints becomes more stringent), the
percentage of feasible solutions that can be obtained using the
SDR approach (either directly from rank-1 solutions or after the
randomization step) diminishes quickly.
In Table II, we consider solving the QCQP using the

FPP-SCA algorithm which solves in each iteration (setting
). The maximum number of iterations was set to 30 and

convergence was declared if
, for . The vector used to initialize the FPP-SCA

algorithm in each simulation run was randomly drawn from an
i.i.d. complex circularly symmetric zero mean Gaussian distri-
bution of variance 2. The table reports the average number of
simulation runs where a feasible solution was obtained (i.e.,

), the average number of iterations until a feasible so-
lution was obtained, the average number of iterations until con-
vergence is declared, and the average difference between the
solution obtained by FPP-SCA and the lower bound obtained

from the (higher-rank) solution of . The table shows that
a feasible solution can be obtained from FPP-SCA with very
high probability even for large , unlike the SDR approach.
With for example, it is almost impossible to find a so-
lution using SDR followed by randomization if the solution is
not rank-1, whereas in 92.8% of the cases FPP-SCA managed
to find a feasible point. This percentage can even be increased
further if multiple starting points are considered for the non-fea-
sible cases. The table also shows that few iterations are required
for the algorithm to converge, and much fewer iterations are re-
quired to reach a feasible point. Finally, the table shows that the
solutions obtained using the FPP-SCA algorithm are very close
to the generally unattainable relaxation lower bound provided
by the SDR. Tables III and IV show similar results for a higher
dimension .
Multicast Beamforming under Interference Constraints.

We further illustrate the advantage of FPP-SCA using a wire-
less communication design problem, namely secondary multi-
cast beamforming as considered in [17], which can be posed as
the following non-convex QCQP:

(7)

which describes a system comprising a secondary transmitter
with antennas, secondary single-antenna receivers inter-
ested in the same multicast, and primary single-antenna re-
ceivers. The secondary receivers should be provided with
signal power no less than some threshold, while the primary
receivers should be protected from excessive interference. The
channel gains from the transmit antennas to the i-th secondary
user are denoted as , and those to the k-th primary user as .
We assume i.i.d. Rayleigh fading, i.e., the channels are drawn
from an i.i.d. zero-mean complex Gaussian distribution with

.
For smaller problem dimensions, like the ones simulated in

[17], a feasible point is easy to find using SDR and randomiza-
tion. However, it becomes very hard to find a feasible point when
the problem size becomes higher. We conducted simulations for

, , , and . We
simulated 1000 random problem instances having feasible SDR.
After SDR, we drew randomization points for each problem
instance. None of them was (or could be scaled to be) feasible.
However,FPP-SCAinitializedwithanSDRrandomizationpoint
managed to find a feasible solution in all problem instances, with
onlyminor average power increase (ranging from 1 to 2.2 dB, for
ranging from12 to24, respectively) compared to thegenerally

unattainable relaxation lower bound provided by SDR.

IV. CONCLUSIONS

FPP-SCA is a new iterative approach for approximately
solving general QCQPs. FPP-SCA was compared with conven-
tional SDR followed by randomization, and it was observed that
FPP-SCAwas successful in obtaining good feasible solutions for
a much higher percentage of problem instances than SDR plus
randomization, at a lowerworst-casecomplexity, andsmallergap
to the relaxation lower bound. The results suggest that FPP-SCA
holds promise for a broad range of applications in engineering
design problems that can be cast as non-convexQCQPs.
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