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Abstract—Quadratically constrained quadratic programming
(QCQP) is NP-hard in its general non-convex form, yet it frequently
arises in various engineering applications. Several polynomial-time
approximation algorithms exist for non-convex QCQP problems
(QCQPs), but their success hinges upon the ability to find at least
one feasible point—which is also hard for a general problem in-
stance. In this paper, we present a heuristic framework for com-
puting feasible points of general non-convex QCQPs using simple
first-order methods. Our approach features low computational and
memory requirements, which makes it well suited for application
to large-scale problems. While a priori it may appear that these
benefits come at the expense of technical sophistication, render-
ing our approach too simple to even merit consideration for a
non-convex and NP-hard problem, we provide compelling empir-
ical evidence to the contrary. Experiments on synthetic as well as
real-world instances of non-convex QCQPs reveal the surprising
effectiveness of first-order methods compared to more established
and sophisticated alternatives.

Index Terms—Non-convex optimization, quadratically con-
strained quadratic programming (QCQP), feasibility pursuit, Nes-
terov smoothing, first-order methods, power system state estima-
tion (PSSE).

I. INTRODUCTION

NON-CONVEX QCQPs form an important class of opti-
mization problems which find widespread application in

various engineering disciplines (see [2] and references therein).
Non-convex QCQP is NP–hard in its general form [3], so
approximation algorithms are often utilized with the goal of
obtaining high quality, albeit sub-optimal solutions in
polynomial-time.

The prevailing approach is Semidefinite Relaxation (SDR)
[4], [5], which uses matrix lifting coupled with rank relaxation
to relax the problem into a convex Semidefinite Program (SDP).
When the SDP solution is not rank-1 (which is typically the
case, except for specially structured QCQPs), a post-processing
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step is used to convert the SDP solution into a feasible so-
lution for the original non-convex QCQP problem. However,
in instances where the constraints of the QCQP problem in-
volve indefinite matrices and/or double sided inequalities, then
such post-processing algorithms generally fail to yield a feasi-
ble point, thereby limiting the overall effectiveness of SDR –
not to mention the potentially very high complexity incurred in
solving the relaxed problem in SDP form.

Another popular approach is Successive Convex Approxima-
tion (SCA) [6]–[9], which approximates the problem via a se-
quence of convex subproblems initialized from a feasible point.
Under certain technical conditions, convergence of the SCA
iterates to a stationary point of the QCQP problem can be estab-
lished. Although this framework is more broadly applicable to
non-convex QCQPs compared to SDR, computing an initial fea-
sible point for general non-convex QCQP is NP–hard as well [3].

Hence, one can conclude that determining a feasible point of
a non-convex QCQP problem is the critical step for any approx-
imation algorithm to succeed. Recently, an algorithm known as
Feasible Point Pursuit (FPP)-SCA [10] was proposed specifi-
cally for this task. FPP-SCA uses SCA together with auxiliary
slack variables to approximate the feasibility problem by a se-
quence of convex subproblems. The algorithm works with any
choice of initialization, as the slack variables guarantee that each
SCA subproblem is feasible at every step. Empirically, FPP-
SCA demonstrates very good performance in attaining feasibil-
ity for general non-convex QCQPs. Nevertheless, the algorithm
is not without its drawbacks. For one, it is required to itera-
tively solve a sequence of convex optimization problems via
interior-point methods (IPMs), which can be computationally
very demanding. In addition, eigen-decomposition of all the
quadratic constraint matrices is required, followed by storing
the positive and negative definite components in memory.

We point out that a consensus-ADMM (C-ADMM) algorithm
for general non-convex QCQPs has been proposed in [11], which
can also be used for directly computing a feasible point. The
per-iteration complexity of C-ADMM is much lower than that of
FPP-SCA, but the drawback is that C-ADMM is very memory
intensive, since it uses local copies of the global optimization
variable (one for each constraint). Due to their inherently large
computational and memory footprint, FPP-SCA and C-ADMM
are not well suited for solving problems in large dimensions
and/or with a large number of constraints. This motivates the
development of low-complexity feasibility pursuit algorithms.
Towards this end, we propose to use a modified reformu-
lation of the optimization criterion employed by FPP-SCA,
which is well-suited for direct application of first-order methods
(FOMs). The appeal of using FOMs lies in the fact that they have
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minimal memory and computational requirements relative to
other optimization schemes, which makes them well-suited
for application on large-scale problems. Furthermore, FOMs
can exploit data sparsity very effectively, whereas one has to
typically expend considerable effort in customizing IPMs to
accomplish the same feat (see [12] and references therein).
Hence, in this paper, we adopt a first-order based optimization
approach for general quadratic feasibility problems, instead of
resorting to FPP-SCA or C-ADMM. Our interest in pursuing
this approach is partially motivated from recent work which
established that FOMs work remarkably well (under certain
conditions) for many important non-convex problems arising in
low-rank matrix regression and structured matrix factorization
[13]–[18], as well as generalized phase retrieval [19]–[21]. In
addition, we also attempt to partially alleviate the computational
burden associated with FPP-SCA by using FOMs for solving
each SCA subproblem.

In prior work [22], we have developed customized FOM-
based SCA algorithms for a special class of non-convex QCQP,
which can be interpreted as solving an alternative formulation of
the feasibility problem considered here for non-convex QCQP
with two-sided inequalities (see [23]). In contrast, this paper
focuses on developing FOMs for the feasibility formulation in
[10], which is applicable to any instance of non-convex QCQP.

We use judicious experiments to demonstrate the viability
of using FOMs as a competitive alternative to pre-existing ap-
proaches [5], [10], [11] for determining feasible solutions of
general non-convex QCQPs. In several of our experiments, we
advocate using empirically chosen steps-sizes for our FOMs,
which currently do not feature guaranteed convergence to the
set of stationary solutions of our proposed optimization formula-
tion. Such a choice is motivated by the following considerations:
i) in several setups, the cost function we employ does not satisfy
standard assumptions made in the analysis of FOMs, thereby
precluding us from invoking pre-existing convergence results;
ii) in other cases where these assumptions are satisfied, the req-
uisite step-sizes are dependent on unknown constants which
typically have to be estimated via crude means and ultimately
result in very conservative step-sizes that exhibit poor practical
performance; and most importantly, iii) a stationary point of our
criterion is not guaranteed to be a feasible solution. In order
to ensure convergence to a feasible solution (when one exists)
using our framework, one has to establish convergence to the
globally optimal solution of the non-convex cost function we
utilize, which is NP–Hard in general [24]. This implies that the
standard metric of ensuring convergence to a stationary point
using FOMs is not sufficient to guarantee recovery of a feasible
solution in this case. While this may lead one to question the
merit of adopting such a FOM based approach, we point out
that this should not a priori be construed as being a glaring
drawback. Indeed, these hardness results ultimately stem from
the fact that establishing (in)feasibility of an arbitrary instance
of QCQP is NP–hard in general, which implies that all possible
polynomial-time approximation schemes are doomed to fail on
certain instances of the feasibility problem under consideration.

These technical issues notwithstanding, one may also doubt
the potency of our direct FOM based approach on the grounds
that it is too simplistic for a problem which is non-convex and
NP-Hard in its general form. Hence, a priori, it may seem
a foregone conclusion that the proposed approach is destined

to perform poorly compared to sophisticated polynomial-time
schemes [5], [10], [11] developed for this problem.

Given these ostensible drawbacks of our approach, the out-
come of our experiments comes as a great surprise, as it reveals
something entirely unanticipated: on synthetically generated
feasible instances of large-scale non-convex QCQP, we provide
compelling empirical evidence to demonstrate that the direct
FOM based approach works remarkably well and outperforms
pre-existing alternatives across all baselines. Additionally, we
tested our FOMs on the problem of power system state estima-
tion (PSSE) [26], [27], which is a real world problem arising in
power systems engineering that entails solving a system of non-
random quadratic equations, and is NP–hard in its general form
[28]. Our numerical tests on standard power networks demon-
strate that the FOMs can achieve very favorable performance
(in terms of estimation error) at far lower complexity relative to
competing alternatives.

While the authors themselves were initially skeptical about
the prowess of the direct FOM based approach, given their
startling empirical success, we can reasonably claim that it con-
stitutes a significant advancement in the state-of-art for obtain-
ing feasible solutions for general non-convex QCQP, which,
for the better part of almost two decades, has principally been
SDR. We hope that our work opens the door and catalyzes future
research activity on new applications of non-convex QCQP.

Relative to the conference version [1], which outlines the
proposed framework, this journal version brings a new FOM-
based SCA algorithm, more detailed technical discussions and
results, and real-world PSSE experiments using standard power
network topologies.

The rest of the paper is organized as follows. Section II con-
tains the problem statement and our optimization criterion for
feasible point pursuit. Section III provides a brief overview
of the FOMs we propose to use, while Section IV describes
how to apply these FOMs to our formulation. Experimental re-
sults are provided in Section V and conclusions are drawn in
Section VI. Supplementary results and discussions are relegated
to the appendices.

Throughout the paper, we adopt the following notation. Su-
perscript T is used to denote the transpose of a vector/matrix.
Capital boldface is reserved for matrices, while vectors are de-
noted by small boldface. Scalars are represented in the normal
face, while calligraphic font is used to denote sets. The set of nat-
ural numbers is indicated by N. We denote the N−dimensional
real Euclidean space by RN , while RN

+ and RN
++ represent the

corresponding non-negative and positive orthants respectively.
If a function f(.) is differentiable, its gradient and hessian are
denoted by ∇f(.) and ∇2f(.) respectively. For convex, non-
differentiable f , the subdifferential set at a point x is represented
by ∂f(x).

II. FEASIBLE POINT PURSUIT

This paper considers the case of quadratic feasibility problems
of the form

find
x∈X

x (1a)

s.t. xT Amx − bm ≤ 0, ∀m ∈ MI (1b)

xT Cmx − dm = 0, ∀m ∈ ME (1c)
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where X ⊆ RN is a simple,1 closed, convex set, while MI :=
{1, 2, · · · ,MI } and ME := {1, 2, · · · ,ME } represent the set
of inequality and equality constraints respectively. The matrices
{Am}MI

m=1 and {Cm}ME
m=1 are assumed to be symmetric (with-

out loss of generality), while {bm}MI
m=1 and {dm}ME

m=1 are real
numbers. In the special case where Am � 0,∀m ∈ MI and
ME = 0 (i.e., the equality constraints are absent), (1) reduces
to a convex feasibility problem, for which (in)feasibility can be
established in polynomial-time [29]. However, the general case
of (1) is a non-convex optimization problem due to the presence
of the quadratic equality constraints ME and the inequality con-
straints MI involving possibly indefinite/negative semidefinite
matrices, and is known to be NP–hard [3].

In order to establish the (in)feasibility of a given instance of
(1), one may consider the following optimization problem.

min
x∈X , sI∈RMI ,

sE∈RME

MI∑

m=1

sI(m) +
ME∑

m=1

sE(m) (2a)

s.t. xT Amx − bm ≤ sI(m), (2b)

sI(m) ≥ 0, ∀m ∈ MI (2c)

− sE(m) ≤ xT Cmx − dm ≤ sE(m), (2d)

∀m ∈ ME (2e)

where we have defined sI := [sI(1), · · · , sI(MI )]T and sE :=
[sE(1), · · · , sE(ME )]T as vectors of slack variables correspond-
ing to the inequality and equality constraints respectively, with
one slack variable being added to each constraint in order to
ensure the feasibility of the overall problem. Note that the value
of each slack variable corresponds to the degree of violation
of the constraint with which it is associated. We impose an �1-
penalty on the slack variables in order to promote sparsity of
the constraint violations. If an optimal solution (x∗, s∗I , s

∗
E) of

(2) can be obtained for which s∗I = 0, s∗E = 0, then x∗ is fea-
sible for (1). Otherwise, (1) is infeasible and from the sparsity
pattern of s∗I and s∗E , we can determine the constraints which
cause infeasibility. Nonetheless, computing an optimal solution
of (2) remains a challenging proposition since it is non-convex
and NP–hard in general.

In [10], the SCA technique was used to approximate (2) via a
sequence of convex subproblems. Starting from a random initial-
ization point x(0) ∈ RN , at each SCA iteration k ∈ N, a convex
subproblem is obtained by constructing a convex restriction of
the non-convex constraint set about the current iterate x(k) . This
is accomplished by expressing each non-convex quadratic term
as a difference of convex functions via eigen-decomposition
of its associated matrix, followed by linearization of the non-
convex term about x(k) . The resulting convex set can be ex-
pressed as

P (k)
r :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xT A(+)
m x + 2x(k)T A(−)

m x − x(k)T A(−)
m x(k)

−bm ≤ sI(m),∀m ∈ MI
xT C(+)

m x + 2x(k)T C(−)
m x − x(k)T C(−)

m x(k)

−dm ≤ sE(m),∀m ∈ ME
xT C(−)

m x + 2x(k)T C(+)
m x − x(k)T C(+)

m x(k)

−dm ≥ −sE(m),∀m ∈ ME
(3)

1By simple, we mean that Euclidean projections onto X can be computed in
closed form.

where Am := A(+)
m + A(−)

m , A(+)
m � 0 and A(−)

m ≺ 0,∀m ∈
MI and similarly, Cm := C(+)

m + C(−)
m , C(+)

m � 0 and C(−)
m

≺ 0,∀m ∈ ME . Thus, at SCA iteration k, we obtain a convex
optimization subproblem of the form

x(k+1) ∈ arg min
x∈X∩P(k )

r ,

sI∈R
MI
+ , sE∈RME

MI∑

m=1

sI(m) +
ME∑

m=1

sE(m) (4)

with the solution of the resulting problem being used for lin-
earization in the next iteration. The overall algorithm has been
termed as Feasible Point Pursuit (FPP)-SCA. Utilizing the the-
oretical results developed in [30],2 we can provide the following
characterization of the sequence of generated iterates.

1) The iterate sequence has non-increasing cost.
2) Assuming there exists a convergent subsequence, then

provided that Slater’s Condition [30, Sec. 2.1.2] is satisfied
at the limit of this subsequence, the limit point satisfies
the KKT conditions of (2).

We point out that these theoretical results do not imply that FPP-
SCA is guaranteed to converge to a feasible point of (1); only
convergence to a KKT point of the feasibility problem (2) can
be established. Nonetheless, FPP-SCA was empirically demon-
strated to be highly successful in converging to a zero-slack
solution (i.e., attain feasibility) in a finite number of iterations
for various instances of (1). However, this comes at the expense
of overall problem complexity. Each SCA subproblem (4) can
be recast in Second-order Cone Programming (SoCP) form and
solved via general purpose conic programming solvers (which
use IPMs) at a worst case complexity of O(N + MI + ME )3.5

[31], which is dependent on both N (the number of variables)
and M := MI + ME (the total number of constraints). It is evi-
dent that iteratively solving a sequence of SCA subproblems via
such means can prove to be very computationally expensive for
large N and/or M . Furthermore, it is required to compute the
eigen-decomposition of the matrices {Am}MI

m=1 and {Cm}ME
m=1

in order to separate each matrix into its positive and negative
definite components, which are then stored in memory. Thus,
the overhead in terms of memory can also prove to be quite
substantial for large-scale problems.

With the aim of improving scalability and alleviating the
aforementioned issues with FPP-SCA, we consider the possi-
bility of using FOMs for feasible point pursuit. As a first step
in this direction, we consider the following reformulation of the
feasibility problem (2)

min
x∈X

{
F (x) :=

MI∑

m=1

(xT Amx − bm )+ +
ME∑

m=1

|xT Cmx − dm |
}

(5)
where (x)+ := max{x, 0} and |x| denotes the absolute value of
x. Note formulations (2) and (5) are equivalent at the globally op-
timal solutions of these two problems. The reformulation results
in a problem where all the non-convex constraints of (2) have
been incorporated into the cost function which is composed of
the sum of M non-convex, non-smooth functions; each of which
measures the degree of violation of its corresponding constraint

2To be precise, we verify that the constraint approximation functions defined
in (3) satisfy the conditions laid out in [30, Assumption 1], followed by invoking
[30, Th. 1].
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via a loss function (quadratic hinge-loss for the inequality con-
straints and absolute value for the equality constraints). In the
literature, such a formulation is also known as an exact penalty
formulation [32]. We note that (5) remains non-convex and is
NP–hard in general. At this point, we can choose to proceed in
one of the following two ways.

1) We can apply SCA on the exact penalty formulation (5) to
obtain a convex optimization subproblem at each iteration,
and then utilize FOMs to solve each subproblem at a re-
duced computational complexity relative to interior-point
methods.

2) Alternatively, we can go one step further by eliminating
the SCA procedure from consideration altogether and fo-
cus on tackling (5) directly via FOMs.

In subsequent sections, we describe in detail how to implement
these approaches, followed by experimental evaluations to com-
pare and contrast their performance.

III. OVERVIEW OF FIRST-ORDER METHODS

In this section, we provide a brief overview of the various
FOMs which we propose to use for both direct (non-convex)
and SCA (convex) approaches.

A. Direct Approach

Consider the following optimization problem of minimizing
averages of finite sums

min
x∈X

{
F (x) :=

1
M

M∑

m=1

fm (x)

}
(6)

where X ⊂ RN is a convex, compact set and each fm :
RN → R is a twice differentiable, non-convex function with
L−Lipschitz continuous gradients3; i.e, ∃L ∈ R++ for which

‖∇fm (x) −∇fm (y)‖2 ≤ L‖x − y‖2 ,∀x,y ∈ X (7)

When F is bounded below over X , we can attempt to determine
an approximate solution for (6) using the classical gradient
descent (GD) algorithm which has the following update rule.

y(k) = x(k−1) − αk

M

M∑

m=1

∇fm (x(k−1)) (8a)

x(k) = ΠX (y(k)),∀ k ∈ N (8b)

where ΠX (.) denotes the Euclidean projection operator onto X
and αk ∈ R++ is the step-size in the kth iteration.

Note that each step requires the computation of M gradients,
and hence can be fairly expensive for large M . As a low com-
plexity alternative, we can consider using stochastic gradient
descent (SGD). The algorithm is iterative in nature, where at
each iteration k we randomly draw an index mk from a uniform
distribution defined on the index setM = {1, · · · ,M} and then
apply the following update rule

y(k) = x(k−1) − αk∇fmk
(x(k−1)) (9a)

x(k) = ΠX (y(k)),∀ k ∈ N (9b)

3This in turn implies F (x) is L−Lipschitz smooth since smoothness is
preserved under convex combinations.

Note that the expectation E(y(k) |x(k−1)) equals (8a) (where
the expectation is taken with respect to the random variable
mk ). Hence, the SGD updates (9) are equivalent to standard GD
updates in expectation. The advantage of SGD is that the updates
are O(M) cheaper compared to GD since at each iteration,
we only need to compute the gradient of a single component
function.

A third alternative, which has emerged recently, is Stochastic
Variance Reduced Gradient (SVRG) [33], [34]. The SVRG al-
gorithm can be viewed as a hybrid between SGD and GD, and
proceeds in multiple stages. In each stage s, SVRG defines a
“centering” variable ys from the output of the previous stage
and computes its full gradient ∇F (ys). Next, a fixed number
(say K) of modified inner SGD iterations are executed, where in
each iteration k ∈ {1, · · · ,K}, an index mk is drawn uniformly
at random from M and the following update rule is used

x(0)
s = ys (10a)

v(k)
s = x(k−1)

s − α(k)
s (∇fmk

(x(k−1)
s )

− ∇fmk
(ys) + ∇F (ys)) (10b)

x(k)
s = ΠX (v(k)

s ),∀ k ∈ {1, · · · ,K} (10c)

where the superscript k denotes the inner SGD iteration counter
for stage s. Again, the expectation E(v(k)

s |x(k−1)
s ) equals (8a).

Hence, in expectation, the SVRG updates are also the same as
the GD updates. However, compared to SGD, SVRG uses a dif-
ferent unbiased gradient estimator which corrects the currently
sampled gradient ∇fmk

(x(k−1)
s ) by subtracting a bias term. The

overall algorithm is given by

Algorithm 1: SVRG.
Initialization: Select number of stages S, update frequency
K and step-size sequence. Randomly generate a starting
point z0 ∈ X .
Iterate: for s = 1, 2, · · · , S

• Set ys = zs−1
• Compute gs := ∇F (ys)
• Set x(0)

s = ys

• Iterate: for k = 1, · · · ,K
Randomly pick mk ∈ {1, · · · ,M} and update
v(k)

s = x(k−1)
s − α

(s)
k (∇fmk

(x(k−1)
s ) −∇fmk

(ys) + gs),
x(k)

s = ΠX (v(k)
s )

• End
• Set zs = x(K )

s

End
Return: zS

B. SCA Approach

Consider the following optimization problem

min
x∈X

H(x) (11)

where X ⊂ RN is a compact, convex set and H : RN → R is a
non-smooth, Lipschitz continuous convex function. A standard
method for solving such problems is subgradient descent (SD),
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which has the following update rule.

x(k) = ΠX (x(k−1) − αkg(k−1)),∀ k ∈ N (12)

where g(k−1) ∈ ∂H(x(k−1)) is a subgradient drawn from the
subdifferential set of the function H at the point x(k−1) .

In the special case H(x) = 1
M

∑M
m=1 hm (x), where each

hm (x) is a non-smooth, Lipschitz continuous function, then we
can alternatively use the technique of stochastic subgradient de-
scent (SSD), which proceeds according to the following update
rule

x(k) = ΠX (x(k−1) − αkg(k−1)
mk

),∀ k ∈ N (13)

where the index mk is drawn uniformly at random from the set
M and g(k−1)

mk is a subgradient drawn from the subdifferential
set of the function fmk

at the point x(k−1) . Then, we have

E(g(k−1)
mk |x(k−1)) ∈ ∂F (x(k−1)), which implies that the SSD

iterations are equivalent to SD in expectation.
This concludes our bare-bones overview on FOMs. A com-

plete discussion of the selection of step-sizes and other problem
parameters and their impact on the convergence of the above
algorithms is deferred to Appendix A. In the following section,
we describe how to apply these methods to (5).

IV. PROPOSED ALGORITHMS

A. Direct Approach

We refrain from using SD/SSD on (5), since the sub-
differential set of a non-smooth, non-convex function is not
guaranteed to be non-empty at all points in its domain. This
leaves us with GD, SGD and SVRG at our disposal. However,
these methods are applicable to differentiable cost functions,
whereas each component function of (5) is non-differentiable.
Consequently, we propose to make the following modifications
to (5).

First, consider the hinge-loss functions corresponding to the
quadratic inequality constraints. Define fm (x) := (xT Amx −
bm )+ ,∀ m ∈ MI . We now describe a procedure for construct-
ing a smooth surrogate for each fm (x). Note that each fm (x)
can be equivalently expressed as

fm (x) = max
0≤y≤1

{y(xT Amx − bm )},∀ m ∈ MI (14)

In order to construct a smooth surrogate of fm (x), consider the
following modified version of (14)

f (μ)
m (x) = max

0≤y≤1

{
y(xT Amx − bm ) − μ

y2

2

}
,∀ m ∈ MI

(15)
where μ ∈ R++ is a smoothing parameter. The maximization
problem (15) can be solved in closed form to obtain the follow-
ing equivalent smooth representation

f (μ)
m (x)

=

⎧
⎨

⎩

0, if xT Amx ≤ bm
(xT Am x−bm )2

2μ , if bm < xT Amx ≤ bm + μ

xT Amx − bm − μ
2 , if xT Amx > bm + μ

(16)

The derivation is relegated to Appendix B. Note that each
f

(μ)
m (x) has continuous derivatives given by

∇f (μ)
m (x)

=

⎧
⎨

⎩

0, if xT Amx ≤ bm
2(xT Am x−bm )

μ Amx, if bm < xT Amx ≤ bm + μ

2Amx, if xT Amx > bm + μ

(17)

Hence, f
(μ)
m (x) is a smooth surrogate of fm (x),∀ m ∈ MI .

Furthermore, it can be shown that the following approximation
bounds hold (see Appendix C).

f (μ)
m (x) ≤ fm (x) ≤ f (μ)

m (x) +
μ

2
,∀ x ∈ RN ,∀ m ∈ MI

(18)
The smoothing technique employed in (15) can be viewed as an
extension of Nesterov smoothing [35] to the non-convex case –
albeit in the non-convex setting the representation of f

(μ)
m (x) in

(15) does not correspond to the Fenchel conjugate of a strongly-
convex function.

As for the absolute value penalty functions gm (x) :=
|xT Cmx − dm |,∀ m ∈ ME in (5) corresponding to the equal-
ity constraints, we propose to replace them with quadratic
penalty functions of the form

g(q)
m (x) := (xT Cmx − dm )2 ,∀ m ∈ ME (19)

Following these steps, we obtain a non-convex, differentiable
penalty formulation given by

min
x∈X

{
F (s)(x) :=

1
M

(
MI∑

m=1

f (μ)
m (x) +

ME∑

m=1

g(q)
m (x)

)}
(20)

which is now in a form suitable for application of GD, SGD
and SVRG. The convergence behavior of these algorithms is
determined by the choice of the step-size sequence (and the
additional parameters in the case of SVRG). While several the-
oretical results have been developed recently which establish
non-asymptotic rates of convergence of these algorithms to a
stationary point of non-convex problems of the form (6) for
appropriate choices of parameters (see Appendix A for a full
comparison), adapting these results to the problem under con-
sideration is hampered by the following technical issues.

First, we point out that the cost function of (20) is a quar-
tic polynomial which is neither globally Lipschitz continuous,
nor does it possess globally Lipschitz continuous derivatives.
Hence, in the unconstrained case (i.e., X = RN ), the existing
non-asymptotic convergence results for GD, SGD and SVRG
cannot be applied. When these assumptions do not hold, even
establishing meaningful asymptotic convergence guarantees is a
challenging proposition in general. In Appendix D, we show that
when MI = 0 in (20) (i.e., solving a general system of quadratic
equations), it is indeed possible to establish such a meaningful,
asymptotic convergence result for GD with backtracking line
search.

Next, we consider the caseX ⊂ RN . If we make an additional
assumption that X is compact, then F (s)(x) and its gradients
are (locally) Lipschitz continuous on X . It can be shown that the
Lipschitz constant of ∇F (s)(x) exhibits a O( 1

μ ) dependence on



5932 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 22, NOVEMBER 15, 2017

μ, which is due to the fact that μ is a parameter which controls
the level of smoothing applied to the non-differentiable func-
tion F (x); i.e., a smaller value of μ allows a tighter degree of
approximation, but results in F (s)(x) being less smooth. Typi-
cally, we would prefer to choose a small value for μ in order to
ensure tight approximation to F (x). Meanwhile, the constants
appearing in theO( 1

μ ) expression (which depend on the spectral
characteristics of the matrices in the constraints) are typically
unknown and have to be estimated via some means. In gen-
eral, such procedures generate overestimates of the constants,
which adversely affect convergence speed. Taken together, this
ultimately results in the step-size dictated by theory for conver-
gence of GD and SGD being too conservative for the iterates
to make any reasonable progress over a prescribed number of
iterations.

Finally, we point out that we are ultimately interested in de-
termining a feasible point (i.e., a point x ∈ X for which the
globally optimal cost F (s)(x) = 0 is attained) using our FOMs.
Hence, it is evident that convergence to a stationary point (which
only satisfies the necessary conditions for optimality) is not suf-
ficient to guarantee feasibility. In this case, ensuring recovery
of a feasible solution (when one exists) requires establishing
convergence to the globally optimal cost 0, which, given the
fact that (20) is NP–hard in its general form, is considerably
more difficult to establish relative to showing convergence to a
stationary point. Hence, in several of our experiments, we re-
sorted to empirical step-size selection strategies for our FOMs.
Although we cannot make any theoretical convergence claims
for such step-sizes, our experiments indicate that these methods
can still perform very favorably with these choices.

B. SCA Approach

The SCA approach is based on approximating (5) via a se-
quence of convex problems. Since the non-convexity in (5) is
restricted to the cost function, this entails approximating the
cost function of (5) via a sequence of convex majorization func-
tions. We now describe the procedure for constructing such a
majorization function at each iteration.

First, consider the hinge-loss functions fm (x),∀m ∈ MI .
Again, we utilize eigen-decomposition to decompose each ma-
trix Am into its constituent positive and negative semidefinite
components and then express the associated quadratic term as
a difference of quadratic convex functions. After linearizing the
concave term xT A(−)

m x about the current iterate x = x(k) , we
obtain the following function

um (x,x(k)) := (xT A(+)
m x + (2A(−)

m x(k))T x

− x(k)T A(−)
m x(k) − bm )+ ,∀m ∈ MI (21)

It can be readily verified that ∀m ∈ MI , um (x,x(k)) is a con-
vex, non-differentiable majorizer of fm (x) which is tight at
x = x(k) . Next, we equivalently express each absolute penalty
function gm (x) as

gm (x) = |xT Cmx − dm |
= max{xT Cmx − dm ,−xT Cmx + dm},∀m ∈ ME

(22)

In order to majorize each such gm (x), we resort to the eigen-
decomposition technique to express each of the quadratic terms
inside the point-wise maximization operator as the difference of
convex quadratics. By linearizing the appropriate non-convex
term about x = x(k) , we obtain the pair of convex functions

v(+)
m (x,x(k)) := xT C(+)

m x + (2C(−)
m x(k))T x

− x(k)T C(−)
m x(k) − dm ,∀m ∈ ME (23a)

v(−)
m (x,x(k)) := − xT C(−)

m x − (2C(+)
m x(k))T x

+ x(k)T C(+)
m x(k) + dm ,∀m ∈ ME (23b)

On defining

ωm (x,x(k)) := max{v(+)
m (x,x(k)), v(−)

m (x,x(k))},∀m ∈ ME
(24)

we obtain a convex majorization function for each gm (x),∀m ∈
ME . Hence, at each SCA iteration, we obtain a non-smooth,
convex optimization problem of the following form

x(k+1) ∈ arg min
x∈X

MI∑

m=1

um (x,x(k)) +
ME∑

m=1

ωm (x,x(k)) (25)

We now point out that problem (25) is actually equivalent to
(4), since (4) can be obtained via the epigraph transformation
of (25). Hence, the resulting SCA algorithm inherits the same
convergence properties as FPP-SCA.4 From a computational
standpoint, formulation (25) possesses the advantage of being in
a form suitable for the application of low-complexity subgradi-
ent methods. While subgradient descent can be applied to solve
each SCA subproblem of the form (25) at a rate independent
of the problem dimension N , there is still an implicit depen-
dence on the total number of constraints M (see Appendix A).
In order to remove the dependence on M , we can solve (25)
using the SSGD algorithm, which has the benefit of possess-
ing a convergence rate independent of N and M . However, the
drawback of using SSGD is that it only converges in expectation,
thus implying that the SCA iterates obtained via this method are
not even guaranteed to exhibit monotonic decrease of the cost
function in this case. Nevertheless, it offers a substantially low-
complexity alternative for decreasing the cost function of (25)
initially, with possible “last mile” refinement at a later stage via
a more sophisticated algorithm.

For a given SCA subproblem (25), at each iteration of SSGD,
we are only required to sample an index m from the set
{1, · · · ,M} uniformly at random and then compute a sub-
gradient for the associated function indexed by m in order to
compute the update (13). If the indexed function is of the form
f(x) = (xT Ax + bT x + c)+ , (where A � 0) we can compute
a subgradient g ∈ ∂f(x) at the point x according to the follow-
ing equation

g =
{

2Ax + b, if xT Ax + bT x + c > 0
0, otherwise

(26)

whereas for f(x) = max{h1(x), h2(x)}, where hi(x) =
xT Aix + bT

i x + ci,∀ i = {1, 2} are convex quadratics, a sub-
gradient g ∈ ∂f(x) at the point x can be obtained by simply

4i.e., convergence to a KKT point of the smooth feasibility problem (2).
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selecting any one of the two functions h1(x), h2(x) which at-
tains the maximum and then taking its gradient. Additionally,
in each SCA iteration, we warm start the SSGD algorithm from
the current iterate x(k) in order to obtain further savings in
computation.

V. EXPERIMENTAL RESULTS

In this section, we evaluate and compare the performance of
our methods on synthetically generated experiments as well as
on real engineering problems. First, we provide a few details
regarding the implementation of the methods.

A. Implementation

All our methods were implemented in MATLAB on a Linux
desktop with 4 Intel i7 cores and 16 GB of RAM. We tested the
performance of the direct methods (i.e., GD, SGD, and SVRG)
with the following parameter settings.

1) The smoothing parameter for inequality constraints was
set to μ = 10−4 .

2) For selecting the step-size, the following rules were used
a) Diminishing: αk = c1

kγ

b) Polynomial: αk = c2
(1+c3 k/M )γ

c) Norm regularized: αk = c4/‖x(k)‖2
2

where k ∈ N denotes the iteration index,
c1 , c2 , c3 , c4 ∈ R++ and γ ∈ (0, 1]. The polynomial
step-size rule can be viewed as a generalization
of the popular inverse-t schedule (corresponding to
γ = 1) while the norm regularized step-size rule can
be motivated via arguments made in [14, Proposi-
tion 1] regarding worst-case convergence results of
FOMs applied to minimize quartic functions. The
parameters were empirically tuned to yield the best
performance.

3) For SVRG, the length of each stage was set to S = 4M .
4) Since each method requires a different number of gra-

dient evaluations per iteration, for fair comparison, we
allocated a fixed number of total gradient evaluations to
each method and evaluated the cost function after every
M gradient evaluations. Of course, this implies that the
maximum number of iterations for each method is differ-
ent, depending on the number of gradients evaluated per
iteration.

Regarding SSGD-SCA, we used a maximum of 50 SCA iter-
ations while each inner convex subproblem was solved using
50 × 103 SSGD iterations with a step-size of O( 1√

k
) and iterate

averaging.

B. Experiments on Synthetic Data

First, we present an illustrative experiment on a syntheti-
cally generated instance of a non-convex QCQP problem with
N = 200 variables and M = 1000 constraints. Here, we set
ME = 0 (i.e., no equalities) and randomly generated the in-
equality constraint matrices {Am}M

m=1 from a zero mean, i.i.d.
Gaussian distribution with unit variance (followed by sym-
metrization). In order to ensure that the problem is feasible,
we randomly generated a unit norm vector p and drew each
of the right-hand sides {bm}M

m=1 from a Gaussian distribution

Fig. 1. Single instance of feasibility problem with N = 200 variables and
M = 1000 non-convex quadratic inequalities.

bm ∼ N (pT Amp, 1). In the event pT Amp > bm , we multi-
plied both sides of the inequality by −1 to get ≤ inequalities.
In short, we randomly generated a quadratic feasibility problem
with indefinite matrices which possesses a unit-norm feasible
solution. We exploit this prior knowledge in our setup by setting
X = {x ∈ RN |‖x‖2 ≤ 1}. A randomly generated unit-norm
vector was used to initialize GD, SGD, SVRG and SSGD-SCA.
We used a maximum budget of 1000M gradient evaluations
for each of the direct methods. For SGD, we use the diminish-
ing step-size rule with c1 = 0.1 and γ = 0.5, while for SVRG
and GD, we used the polynomial averaging step-size rule with
c3 = 1 and c2 = 0.1, γ = 1 for GD and c2 = 0.01, γ = 0.5 for
SVRG. We declare success in finding a feasible point if the
value of the cost function in the exact penalty formulation (5) is
smaller than a tolerance value of 10−6 . The results are depicted
in Fig. 1, where we plot the evolution of the constraint violation
(as measured by the quadratic hinge-loss function in (5)) for the
various methods.

In this case, all methods were successful in achieving fea-
sibility; i.e., attaining the globally optimal cost 0. Since the
evolution of the penalty function in Fig. 1 is represented on a
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logarithmic scale, it depicts the cost of the iterates before the
value of 0 was attained. For the direct FOMs, the potential ben-
efits accrued in opting for an aggressive, empirically chosen
step-size strategy is clear. Meanwhile, it is obvious that, given
the scale of the problem, we should refrain from using IPMs
to solve each SCA sub-problem. As an alternative, SSGD-SCA
performs admirably, and even exhibits monotonic decrease of
the cost function in this case. Regarding timing, SGD performed
the best by attaining feasibility in 17 secs, while SVRG, GD and
SSGD-SCA required 27, 85 and 233 secs respectively. Note that
although we adopt a FOM based approach to SCA here, it still
incurs substantially more complexity compared to the direct
FOM approach. Overall, these preliminary results indicate that
the direct FOMs have a distinct advantage over SSGD-SCA. We
now seek to corroborate these findings via the following set of
exhaustive simulations.

In our setup, we fixed the number of variables N and ran-
domly generated instances of quadratic feasibility problems
with varying number of inequality constraints M via the pro-
cedure describe in the previously. For each value of M , we
generated 1000 such instances. We also added the C-ADMM
algorithm proposed in [11] for comparison against our FOMs.
We set the maximum iteration counter of C-ADMM to 5000 it-
erations. Meanwhile, for the direct FOMs, we again use a budget
of 1000M gradient evaluations and a maximum of 50 SCA it-
erations for SSGD-SSCA. We also remove GD from contention
here since our experiments indicate that it is always outper-
formed by SGD and SVRG at lower complexity. Furthermore,
we allow a maximum of 2 restarts for SGD and SVRG in the
event that feasibility is not attained within the prescribed num-
ber of iterations. In each instance, we initialize all the methods
from a randomly generated unit-norm vector. The step-size rules
for the direct FOMs and SSGD-SCA are also unchanged from
the previous experiment. An alternative approach could be to
tune the step-size parameters to achieve the best performance
for each M , at the cost of more effort. As we demonstrate, our
chosen parameters work well across a wide range of N and M ,
thereby considerably alleviating the burden of tuning parame-
ters while simultaneously providing further empirical validation
of our heuristic step-size sequences. We also used the same ter-
mination criterion used in the previous experiment for declaring
convergence to a feasible point for all methods.

We plot the feasibility percentages averaged out over 1000
instances in Fig. 2 as a function of M/N while the timing re-
sults, averaged out over the subset of instances where feasibility
was successfully attained by the respective algorithms, are de-
picted in Fig. 3. From these figures, it can be observed that for
all N considered, SGD and SVRG demonstrate the best perfor-
mance in terms of feasibility and timing (including restarts). For
variable dimensions N = 100 and larger, the running time of
SSGD-SCA becomes too expensive to merit comparison. Sim-
ilarly, for N = 200, we remove C-ADMM as well, since the
average running time of C-ADMM is approximately 20 min-
utes in this case. In contrast, even for N = 200, the worst av-
erage running-time of SGD and SVRG, with restarts taken into
account, is slightly in excess of one minute. It is evident that
SVRG and SGD are significantly more scalable compared to the
existing state-of-art, while, remarkably, exhibiting near-optimal
performance with regard to recovering feasible solutions in all

Fig. 2. Average feasibility percentage versus M/N over 1000 instances.

cases. Hence, SGD and SVRG emerge as the algorithms of
choice in this case.

Finally, although the algorithms we have applied on the
feasibility problem are quite different from each other, we
point out that they exhibit a slight phase transition in terms
of feasibility percentages as M/N varies. Note that this effect
is least pronounced overall in the case of SGD and SVRG.
The presented results (showing enhanced feasibility with more
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Fig. 3. Average timing (seconds) versus M/N over 1000 instances.

constraints) hinge upon the method adopted for generating in-
stances of (1), in particular that a unit-norm solution exists.
While we do not have a complete explanation of this phe-
nomenon at present, a similar observation has been made and
theoretically explained in the special case of solving random
systems of quadratic equations (see [18], [25] for details). We

conjecture that a similar line of reasoning can also be applied
here; however, formally establishing this argument is beyond
the scope of this paper.

C. Experiments on Real Data

In this section, we investigate the efficacy of using FOMs
on the power system state estimation (PSSE) problem, which
entails solving a system of indefinite quadratic equations, thus
rendering it NP–hard in its general form. PSSE is a classi-
cal problem in power systems engineering [26] where, given
a power transmission network comprising N := {1, · · · , Nb}
buses with E ⊆ N ×N transmission lines, the goal is to esti-
mate complex voltages across all buses N from a subset of (per-
haps noisy) supervisory control and data acquisition (SCADA)
measurements, which include (active/reactive) power injections
and flows along with voltage magnitudes. In a AC power flow
model, physical current and voltage laws dictate that the SCADA
measurements are quadratically related to the state voltage vari-
ables to be estimated. Due to lack of space, we omit the exact
derivation of these relationships. Nevertheless, it can be read-
ily shown that the problem boils down to solving a system of
quadratic equations (see [36] for a complete derivation). We
utilize the quadratic penalty formulation (20) for applying our
FOMs. Here, we have MI = 0, N = 2Nb (corresponding to the
real and imaginary parts of the voltage variables), M = ME

(the number of SCADA measurements), X = RN , {dm}M
m=1 is

the set of observed SCADA measurements and {Cm}M
m=1 are

the corresponding symmetrized bus admittance related matrices
which are sparse, low-rank and indefinite. In addition, when the
SCADA measurements are corrupted by additive white Gaus-
sian noise, then the maximum likelihood estimator of the voltage
profile corresponds to the weighted least-squares (WLS) version
of (20), where each quadratic penalty term is inversely weighed
by the noise variance (assumed independent across measure-
ments). In short, we obtain an optimization problem of the
form

min
x∈RN

1
M

M∑

m=1

(xT Cmx − dm )2

σ2
m

(27)

where σ2
m is the noise power associated with measurement m ∈

{1, · · · ,M}.
The standard workhorse algorithm for this problem is the

Gauss-Newton (GN) method, which is well suited for appli-
cation on non-linear least squares problems. When initialized
close to a local minimum, convergence of GN can be estab-
lished. However, determining such an initialization is non-trivial
in general, and the performance of GN is known to be sensitive
to the choice of initialization. Here, we implemented a modified
version of the GN algorithm described in [37, p. 61], which
uses a backtracking line-search procedure for improved perfor-
mance in practice. Our experiments indicate that this modified
GN algorithm exhibits superior performance over standard GN,
and should be used instead as the de-facto performance bench-
mark for this problem. Regarding our FOMs, theoretical conver-
gence of GD with backtracking line-search can be established
for this problem (see Appendix D), while as pointed out earlier,
establishing convergence for the stochastic gradient methods
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is still an open problem. We also point out that a modified
version of FPP-SCA for the WLS formulation has been recently
proposed in [36], which essentially uses the weighted �2-norm
square of the slack variables corresponding to the equalities in
each SCA subproblem of the form (4). Using the arguments
made in Appendix D, a similar convergence claim (to a KKT
point) can also be established for FPP-SCA in this case. Due to
space constraints, we omit the proof. Thus, GD and FPP-SCA
are the only algorithms under consideration here with conver-
gence guarantees for PSSE. We also point out that due to data
sparsity, computing gradients for the direct FOMs in this case
requires sparse matrix-vector multiplications, which can be ac-
complished very efficiently. In contrast, exploiting data sparsity
in general purpose conic programming solvers (utilized by FPP-
SCA) is a more challenging proposition.

In our experiments, we evaluate estimation performance ac-
cording to the normalized mean square error criterion, defined
as NMSE := ‖x̂−x‖2

‖x‖2
, where x̂ is the estimated voltage profile

and x is the true voltage profile. We used MATPOWER [38] for
generating the voltage profiles and SCADA measurements. The
voltage magnitude at each bus was generated from a uniform
distribution over the interval [0.9, 1.1] while the voltage angle
was uniformly distributed over [−0.1π, 0.1π]. The phase of the
reference bus was set to 0 in order to resolve the phase ambigu-
ity in all experiments. We also added independent, zero-mean
Gaussian noise with variances of 10 and 13 dBm to the mea-
surements corresponding to the voltage magnitudes and power
flow/injections respectively. Regarding the algorithms, we run
(modified) GN for a maximum of 100 iterations, since we ob-
served that GN either always converges or ceases to improve
the cost function within this iteration limit. We added a small
regularization term to the inexact Hessian at each step in or-
der to ensure that it is well-conditioned and set the line-search
parameter α = 0.1. For implementing FPP-SCA, we used the
modeling language YALMIP [39] along with the general con-
vex programming solver MOSEK [40]. As for the direct FOMs,
we fix a maximum gradient budget to ensure a fair compari-
son between GD and SGD. For GD, we use a crude choice of
line-search parameters (see [29, p. 466]) while we implemented
SGD with minibatch stochastic gradients of size

⌊
M
10

⌋
and the

norm-regularized step-size rule. GN, GD and SGD were always
initialized from the flat-voltage profile (i.e., the all-ones vector).
The test buses used in our experiments were obtained from the
NESTA archive [41].

In Fig. 4, we present a preliminary simulation result demon-
strating the performance of SGD and GD (with backtracking
line-search) for a single realization of the voltage profile on the
PEGASE-89 bus system with the full set of noisy SCADA mea-
surements (corresponding to N = 178,M = 687). Here, we set
c4 = 4 × 10−5 for the norm-regularized step size rule of SGD.
Fig. 4(a) depicts the evolution of the WLS cost function of (27),
from which it can be seen that SGD attains a solution with
lower cost compared to GD within the prescribed gradient bud-
get, which was set to be 5 × 104M . As evidenced by (Fig. 4(b)),
this also translates into better estimation performance for SGD
compared to GD. In terms of timing, SGD was roughly 6
times faster compared to GD on our machine. Hence, on this
real world problem, SGD is also capable of exhibiting very

Fig. 4. Performance comparison on PEGASE 89 bus system with full set of
SCADA measurements.

favorable performance, even when pitted against a provably
convergent FOM.

Next, we devised an experiment where we evaluated the es-
timation performance of SGD, GN, and FPP-SCA (all initial-
ized from the flat-voltage profile) with varying number of noisy
measurements. GD is omitted here since it exhibits worse esti-
mation performance compared to SGD at higher complexity on
this network. We only run 2 iterations of FPP-SCA due to its
high complexity. Additionally, we also refine the final solution
returned by SGD using 2 iterations of FPP-SCA. Given a sam-
pling fraction γ ∈ (0, 1], we sample a fraction γ of the total mea-
surements uniformly at random from each measurement type.
This implies that for the active power injections, for example,
out of a total of Nb = 89 available measurements, we subsam-
pled �γNb� measurements uniformly at random, and likewise
for the other measurement types. All our results were averaged
over 200 Monte-Carlo trials, and are depicted in Fig. 5. It is ev-
ident that on this network, GN, while being the fastest method,
is also the one which exhibits the worst estimation perfor-
mance. In contrast, SGD performs significantly better, albeit at
(moderately) higher complexity. Owing to its high complexity,
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Fig. 5. Performance results for PEGASE 89 bus system.

running FPP-SCA from the flat-start for 2 iterations incurs ap-
proximately the same running-time as SGD while being sig-
nificantly worse-off in terms of NMSE. This highlights the
ability of SGD to attain a very favorable performance-
complexity trade-off compared to other alternatives. We addi-
tionally note that the solution determined by SGD can serve as a
good initialization for FPP-SCA, which obviates the need to ini-
tialize FPP-SCA from the flat voltage profile and thereby incur
significantly higher complexity. Clearly, combining SGD with
2 iterations of FPP achieves the lowest NMSE. However, this
combined heuristic still exhibits the highest complexity (even
with 2 SCA iterations), which further underscores the benefit of
SGD initialization.

We also carried out similar experiments on a series of test bus
systems. Fig. 6 depicts the results for the IEEE 30 bus network.
In this case, we used a gradient budget of 5000M for the FOMs
and set c4 = 0.02 for SGD. As this is a fairly small network,
we initialized FPP-SCA from the flat start and ran it until it
attains convergence in the cost function, or a maximum of 20
iterations are executed. It is evident that both FOMs outper-
form GN and FPP-SCA in terms of estimation error this case,
which is remarkable given the fact that they are considerably less

Fig. 6. Performance results for IEEE 30 bus system.

sophisticated compared to the aforementioned methods. Fur-
thermore, while it may be tempting to conjecture from the fig-
ures that GN attains the best performance-complexity trade-off
in this case, this is not so: in our experiments, GN never im-
proves upon its estimates beyond 100 iterations, and thus one
cannot obtain better estimation performance for GN by using
more iterations. Hence, it is SGD which is overall the best in
this case from the perspective of performance-complexity trade-
off, which makes it all the more remarkable given that it is the
least sophisticated technique amongst all the methods under
consideration.

In Fig. 7, we show the results obtained on the IEEE 57 bus
network, for which we used a maximum gradient budget of
5000M and set c4 = 0.05. In this case as well, we initialized
FPP-SCA from the flat start until convergence or a maximum
of 20 iterations are reached. From the figures, it can be seen
that both FOMs perform very admirably in terms of estimation
error compared to both GN and FPP-SCA: GN demonstrates
class-leading performance only for γ ≥ 0.9 while running FPP-
SCA always results in higher complexity relative to the other
methods. It is clear that when one has access to a partial set of
measurements (i.e., γ ≤ 0.8), the FOMs possess the upper hand
in terms of performance.
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Fig. 7. Performance results for the IEEE 57 bus system.

VI. CONCLUSION

We presented a simple heuristic framework for determining
feasible points of general non-convex QCQPs using memory
efficient and computationally lightweight FOMs, which makes
our approach very scalable. While a general theory of provable
performance guarantees is elusive at present, we provided a se-
lection of empirical step-sizes for which the FOMs surprisingly
exhibit very favorable performance in terms of feasibility at-
tained on synthetic experiments and estimation error for PSSE
using real power network data compared to more established
and sophisticated alternatives. Given the startling empirical per-
formance of FOMs for this class of hard optimization problems,
we can reasonably claim that our direct FOM based approach
constitutes a significant advancement in the state-of-art for com-
puting feasible solutions of large-scale non-convex QCQP. In
particular, the stochastic gradient methods emerge as the algo-
rithms of choice in our experiments.

APPENDIX A
PARAMETER SELECTION AND ALGORITHM CONVERGENCE

In this section, we describe the convergence behavior of the
various algorithms in their prescribed settings (i.e., non-convex
or convex) as outlined in Section III.

A. Direct Approach

We begin with some results on the convergence of GD for non-
convex problems of the form (6). First, consider the case X =
RN . We define a point x̄ ∈ RN to be ε−approximate stationary
if ‖∇F (x̄)‖2

2 ≤ ε. Assuming F (x) is L-Lipschitz smooth onX ,
then, GD with a 1/L step-size requires at most O(L

ε ) iterations
to attain ε−approximate stationarity [42, p. 29]. In the more
general case of X ⊂ RN , convergence rate guarantees can be
established in terms of the generalized projected gradient, which
is defined as

PX (x, α) :=
1
α

[x − x+] (28)

where x+ := arg min
u∈X

∇F (x)T u + 1
2α ‖u − x‖2

2 for a given

point x ∈ RN and step-size α. In [43, Lemma 3], it is shown
that as ‖PX (x, α)‖2 diminishes, x+ approaches a stationary
point of (6). For a constant 1/L step-size, it has been estab-
lished [44, Corollary 1] that the number of iterations required
for ‖PX (x, α)‖2

2 ≤ ε is O(L
ε ) in the worst case. Since F (x)

is defined to be the average of M component functions, this
translates into an iteration complexity bound of O(M L

ε ) for at-
taining ε-stationarity. While it is NP–hard in general to establish
convergence to a local minimizer of a non-convex cost function
[24], in the special case where F (x) possesses the strict saddle
property5 and X = RN , it has been shown [45] that GD with
a constant step-size < 1/L converges almost surely to a local
minimizer.

Next, we consider the convergence behavior of SGD. In [46],
it is shown that the αk = 1

kL step-size rule can be used to prove
almost-sure (asymptotic) convergence of the SGD iterates to
a stationary point. When X = RN , an explicit iteration com-
plexity upper bound for establishing convergence of SGD to an
ε−approximate stationary point (E[‖∇F (x)‖2

2 ] ≤ ε)6 can also
be derived, if, in addition to L−Lipschitz smoothness, the fol-
lowing assumption is made

max
m∈M

{‖∇fm (x)‖2} ≤ σ,∀x ∈ RN (29)

i.e., all component functions possess uniformly bounded gradi-
ents, which is also equivalent to each fm (x) being σ-Lipschitz
continuous. Then, for a specifically chosen constant step-size,
SGD requires O(Lσ 2

ε2 ) iterations to obtain an ε−approximate
stationary point [47], [48, Th. 1]. This choice of step-size re-
quires knowing the total number of iterations beforehand, which
may not be practical in all cases. Note that while this bound is
independent of M , it depends on the variance of the stochas-
tic gradients. Additionally, if F (x) possesses the strict saddle
property, then under certain conditions, convergence of SGD to
a local minimizer can be established in (large) polynomial-time
[49]. For the case X ⊂ RN , an SGD algorithm with a ran-
domized stopping criterion is described in [44] which achieves
ε−stationarity (i.e., E[‖∇P (x, α)‖2

2 ] ≤ ε) in at most O(Lσ 2

ε2 )
iterations with a constant 1/2L step-size.

5i.e., the Hessian at every local minimizer is positive definite and at all other
stationary points possesses at least one strictly negative eigenvalue.

6For stochastic iterative algorithms which make use of unbiased gradient
estimators, the expectation is taken with respect to the stochasticity of the
algorithm.
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Finally, we focus on the convergence of SVRG for non-
convex problems. In the unconstrained setting (i.e., X = RN ),
assuming F (x) is L−Lipschitz smooth, the references [48], [50]
have established that by properly tuning the algorithm parame-
ters, the SVRG iterates requireO(M 2 / 3 L

ε ) iterations to converge
to an ε-approximate stationary point of (6) (in expectation). The
reference [51] considers the constrained case, and shows that
SVRG requires O(M L

ε ) iterations to attain ε-approximate sta-
tionarity (with respect to E(‖PX (x, α)‖2

2)). With minibatching,

this rate can be improved to O(M + (M 2 / 3 )L
ε ). However, the

proof requires F (x) to be globally L-smooth rather than being
locally smooth over X . We note that in spite of using randomly
sampled gradients, the complexity bounds for SVRG are inde-
pendent of the variance of the stochastic gradients due to the
explicit variance reduction technique employed by SVRG.

B. SCA Approach

In this section, we discuss the convergence behavior of the
algorithms selected for solving (11). The convergence rates of
these algorithms for convex problems are well established. For
SD, selecting a step-size sequence αk = O( 1√

k
) guarantees a

convergence rate ofO( 1√
k
) in terms of the cost function, which is

minimax optimal for this class of problems [53]. Using a similar
step-size as SD together with iterate averaging, SSGD is also
able to attain the same O( 1√

k
) convergence rate in expectation.

However, the advantage of SSD lies in the fact that its individual
iterations are O(M) faster since at every iteration we only need
to compute a single subgradient.

APPENDIX B
DERIVATION OF SMOOTHED FUNCTION

Consider the following maximization problem

f (μ)
m (x) = max

0≤y≤1
{y(xT Amx − bm ) − μ

y2

2
},∀ m ∈ M

(30)
Note that for every x ∈ RN , the corresponding maximiza-

tion problem is strongly concave in y, and hence the maxi-
mum is always uniquely attained. Define the function g(y) :=
y(xT Amx − bm ) − μy 2

2 . In order to obtain a closed form so-
lution to (30), we consider the following three cases.

1) xT Amx − bm ≤ 0 : In this case, it can be readily seen that
the choice of y which maximizes g(y) over the interval
[0, 1] is y = 0. Thus, we obtain

f (μ)
m (x) = 0, if xT Amx ≤ bm (31)

2) 0 < xT Amx − bm ≤ μ : The function g(y) attains its
maximum at y = xT Am x−bm

μ , which in this case, lies in
the interval (0, 1]. Substituting this value in (30) yields

f (μ)
m (x) =

(xT Amx − bm )2

2μ
, if bm < xT Amx ≤ bm + μ

(32)
3) xT Amx − bm > μ : In this case, the function g(y) attains

its maximum at a point y > 1 which lies outside the inter-
val [0, 1]. As the function is monotonically increasing, we
choose the value y = 1 which maximizes g(y) over [0, 1]

to obtain

f (μ)
m (x) = xT Amx − bm − μ

2
, if xT Amx > bm + μ

(33)

APPENDIX C
DERIVATION OF APPROXIMATION BOUNDS

The approximation bounds (18) can be derived using the
same arguments first used in [35] for establishing approxima-
tion bounds for non-smooth, convex functions using Nesterov
smoothing. Here, we show that these results can also be extended
to our non-convex setting.

In order to derive the desired bounds (18), we will equiva-
lently show that the following result holds.

fm (x) − μ

2
≤ f (μ)

m (x) ≤ fm (x),∀x ∈ RN ,∀ m ∈ M (34)

It is evident that the upper bound holds by inspection of the
definitions of fm (x) (14) and f

(μ)
m (x) (15). To show that the

lower bound holds, we first note that max0≤y≤1
y 2

2 = 1
2 . Hence,

it follows that for any x ∈ RN , μ ∈ R++ and m ∈ M, we have

y(xT Amx − bm ) − μ
y2

2
≥ y(xT Amx − bm ) − μ

2
,

∀ 0 ≤ y ≤ 1

⇒ max
0≤y≤1

{y(xT Amx − bm ) − μ
y2

2
}

≥ max
0≤y≤1

{y(xT Amx − bm )} − μ

2
,

⇒ f (μ)
m (x) ≥ fm (x) − μ

2
(35)

This concludes the proof.

APPENDIX D
CONVERGENCE OF GRADIENT DESCENT

In this section, we establish that GD with backtracking line
search globally converges to the set of stationary points of the
quadratic penalty formulation for solving general systems of
quadratic equations (i.e., (20) with MI = 0), without any Lips-
chitz smoothness assumptions. We emphasize that this is not a
new result, but rather a refinement of the following pre-existing
result.

Lemma 1 [54, Proposition 1.2.1]: Let {x(k)} be a sequence
of iterates generated by GD with backtracking line search for
step-size selection. Then, every limit point of {x(k)} is a sta-
tionary point.

This result, while not requiring any Lipschitz smoothness as-
sumptions, is still contingent on a general condition for gradient
based methods being satisfied, which requires that the descent
direction does not become asymptotically orthogonal to the gra-
dient, unless the gradient vanishes (see [54, p. 35]). We point
out that GD naturally satisfies this condition, thus implying
that the convergence claim stated above holds. However, this
result, on its own, is rather weak. It states that if the sequence
{x(k)} possesses a convergent subsequence, then the limit of the
subsequence is a stationary point. In order to further improve
upon this claim, we proceed as follows:
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1) First, we show that irrespective of initialization, the se-
quence of iterates {x(k)} generated by GD with back-
tracking line search always possesses a convergent subse-
quence.

2) Using the above result in conjunction with Lemma 1, we
will show that the entire sequence {x(k)} converges to a
stationary point.

The first condition can be established by exploiting the fact
the cost function is a quartic polynomial which is coercive.7

A useful attribute of coercive functions is that they satisfy the
following property.

Lemma 2 [55, Lemma 8.3]: Let f be a continuous, coercive
function. Then, every sub-level set Xγ := {x ∈ RN | f(x) ≤
γ} of f is compact.

This implies that for any point x(0) ∈ RN used to initial-
ize GD, the initial sub-level set Xf (x( 0 ) ) := {x ∈ R | f(x) ≤
f(x(0))} is always compact. Since backtracking line search is
used to ensure descent of GD at each iteration, it follows that
the entire sequence of iterates {x(k)} generated by GD lie in
Xf (x( 0 ) ) , and hence, are bounded. By appealing to the Weier-

strass theorem [54, Proposition A.8], it then follows that {x(k)}
possesses a convergent subsequence.

In order to show the final part of our claim, we will utilize the
following result, which is extracted from [8, Corollary 1]. For
completeness, we include the proof of the statement.

Lemma 3: Assume that Xf (x( 0 ) ) is compact. Then, the se-

quence of iterates {x(k)} generated by GD with backtracking
line search satisfy

lim
k→∞

d(x(k) ,X∗) = 0

where X∗ is the set of stationary points.
Proof: We have already shown that Xf (x( 0 ) ) is compact.

The remainder of the claim is proven by contradiction. We
assume that there exists a subsequence {x(kj )} such that
limk→∞ d(x(kj ) ,X∗) ≥ δ for some δ ∈ R++ . Since this sub-
sequence lies in the compact set Xf (x( 0 ) ) , it has a limit point x̄.
By further restricting the indices of this subsequence, we obtain

d(x̄,X∗) = lim
k→∞

d(x(kj ) ,X∗) ≥ δ

However, this is a contradiction of the fact, that, due to Lemma 1,
we have x̄ ∈ X∗. �

Hence, it follows that the entire sequence {x(k)} globally
converges to the set of stationary points, in an asymptotic sense.
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