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Abstract—A number of important problems in engineering can
be formulated as non-convex quadratically constrained quadratic
programming (QCQP). The general QCQP problem is NP-Hard.
In this paper, we consider a class of non-convex QCQP problems
that are expressible as the maximization of the point-wise mini-
mum of homogeneous convex quadratics over a “simple” convex
set. Existing approximation strategies for such problems are gen-
erally incapable of achieving favorable performance-complexity
tradeoffs. They are either characterized by good performance but
high complexity and lack of scalability, or low complexity but rel-
atively inferior performance. This paper focuses on bridging this
gap by developing high performance, low complexity successive
non-smooth convex approximation algorithms for problems in this
class. Exploiting the structure inherent in each subproblem, spe-
cialized first-order methods are used to efficiently compute solu-
tions. Multicast beamforming is considered as an application ex-
ample to showcase the effectiveness of the proposed algorithms,
which achieve a very favorable performance-complexity tradeoff
relative to the existing state of the art.

Index Terms—Non-convex optimization, non-smooth optimiza-
tion, quadratically constrained quadratic programming (QCQP),
first-order methods, convergence, Nesterov smoothing, Nemirovski
saddle point reformulation, massive multiple-input multiple-
output (MIMO) communications, multicasting, per-antenna power
constraints.

I. INTRODUCTION

QUADRATICALLY constrained quadratic programming
(QCQP) problems are an important class of optimization

problems which involve minimizing a quadratic cost function
subject to quadratic inequality constraints, and find widespread
application in various engineering fields (see [2] and references
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therein). However, the general case of the QCQP problem is
known to be NP–Hard [3]. In this paper, we consider a special
class of non-convex QCQP problems which can be expressed as

max
x∈CN

min
m∈M

xH Amx (1a)

s.t. x ∈ F (1b)

where M = {1, 2, · · · ,M}, Am ∈ CN ×N � 0, ∀ m ∈ M,
and F ⊆ CN is a simple1, compact, convex set. Note that (1)
is a non-smooth, non-convex optimization problem since the
point-wise minimum of convex quadratics is non-differentiable
and non-concave. As a motivating example, such a formulation
naturally arises in single-group multicast beamforming [4].

A. Prior Art and Motivation

Although (1) is a challenging non-convex optimization
problem, there exist tractable approximation strategies for
computing high quality, suboptimal solutions. A general ap-
proximation framework for solving such non-convex problems
is successive convex approximation (SCA) [5]–[9], which
is based on iteratively solving a series of convex problems
obtained by constructing a convex surrogate of the non-convex
objective function at each iteration. Under appropriate technical
conditions, convergence of the iterates generated by the
algorithm to a stationary point can be established (see [5]–[9]
for details). Furthermore, if the feasible set F is defined by
quadratic inequalities (as is the case in multicast beamforming),
then the technique of semidefinite relaxation (SDR) [10] can be
used to obtain an approximate solution to (1). In this approach,
(1) is first converted into an equivalent rank-1 constrained
semidefinite programming (SDP) problem, following which
the rank constraint is dropped to obtain a relaxed convex SDP
problem. A post-processing step is then used to convert the
high rank solution of the relaxed problem into a rank-1 solution
according to a randomized procedure (see [4] for details). One
can also use a combined two-step strategy where SDR followed
by randomization is used to yield an initial approximate
solution, which is then further refined via SCA.

Regardless of how successful these approaches prove to be
in yielding high quality, approximate solutions of (1), they all

1By simple, we mean that the Euclidean projection operation onto the set F
can be computed in closed form.
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suffer from the downside of having high computational com-
plexity. SDR requires lifting the problem to higher-dimensional
space, effectively squaring the number of variables, while SCA
requires one to solve a sequence of general convex programming
problems, each of which can be computationally expensive. In
this manuscript, we focus on addressing this shortcoming by
developing high performance, low complexity SCA algorithms
for QCQP problems of the form (1).

B. Contributions

Our approach for developing fast SCA algorithms can be sum-
marized as follows: at each iteration we construct a non-smooth,
convex surrogate function of the non-convex objective of (1) by
locally linearizing each quadratic component of (1a) about the
current iterate. On replacing (1a) with its convex surrogate func-
tion, at each iteration, we obtain a non-smooth, convex optimiza-
tion subproblem. The solution of each subproblem is then used
as the point about which we construct a convex surrogate func-
tion in the next iteration. We establish the global convergence of
the iterates generated by the resulting SCA algorithm to the set
of d-stationary solutions of (1) via two different techniques. The
main difference between these proof techniques is that the first
reformulates (1) into a smooth problem and then passes through
an argument involving the KKT conditions of said smooth prob-
lem (valid under some constraint qualification) to arrive at the
desired result, while the second verifies the result directly by es-
tablishing a link between the first-order properties of the objec-
tive of (1) and its non-smooth, convex surrogate about the current
iterate. The latter approach does not depend on any constraint
qualifications and also establishes that all requisite regularity
assumptions are automatically satisfied by (1), which makes it a
stronger result compared to the former. To the best of our knowl-
edge, this marks the first time that such a direct proof of conver-
gence has been rigorously established for this class of problems.
In fact, the proof applies to any problem which involves the
maximization of the point-wise minimum of a finite number of
smooth, concave functions2 over a convex set, and hence may
be of broader interest to the signal processing community.

The overall complexity of this algorithm depends on the cost
incurred in solving each non-smooth, convex subproblem. The
prevailing approach for solving each subproblem is to first con-
vert it into an equivalent smooth representation and then use
general purpose convex optimization solvers, which utilize
interior-point methods, for obtaining solutions. However, such
a smooth reformulation has undesirable consequences from a
computational standpoint, since it introduces additional con-
straints. In addition, when the number of variables is large, then
using interior-point methods to solve each subproblem can be-
come very computationally expensive.

In order to reduce the complexity of solving each subproblem,
we explore the idea of using fast, first-order methods (FOMs)
for efficiently solving each subproblem in its non-smooth repre-
sentation. It is shown that the cost function of each subproblem
possesses special structure in the form of being expressible as

2or, stated equivalently, the minimization of the point-wise maximum of a
finite number of smooth, convex functions.

the maximization of a bilinear function over a convex set. This
is the key step, since this form of structure can be exploited by
the Nesterov smoothing technique [12] and Nemirovski’s sad-
dle point reformulation approach [13] to allow the development
of specialized FOMs for efficiently solving each SCA subprob-
lem. These methods possess the desirable property of low per-
iteration complexity and an improved iteration complexity over
standard methods for non-smooth, convex-optimization (e.g.,
projected subgradient methods). In addition to these two meth-
ods, we also propose using an inexact version of the classical
Alternating Direction Method of Multipliers (ADMM) algo-
rithm [14]–[16] for solving each SCA subproblem, which drops
expensive, exact variable updates in favor of computationally
cheaper, albeit inexact updates.

In order to test the performance of the proposed FOM-based
SCA techniques, we apply them to the problem of designing a
max-min fair multicast beamformer. We consider the following
two complimentary scenarios within the multicast context.

� A traditional multicasting scenario, where the number of
users is much larger than the number of transmit antennas,
under a transmit sum power constraint.

� A Massive MIMO multicasting scenario, where the num-
ber of transmit antennas is larger than the number of users,
under per-antenna power constraints (PAPCs).

A comprehensive set of simulations is carried out to evaluate
the performance of the proposed methods relative to the existing
state-of-the-art in both scenarios.

Relative to [1], which describes the inexact-ADMM based
approach for solving each SCA subproblem, the journal version
adds the FOMs based on Nesterov smoothing and Nemirovski’s
saddle point reformulation approach, the convergence proofs
for the SCA algorithm (the stronger result is included in the
appendix while the other is contained in the supplementary ma-
terial), and comprehensive numerical results and comparisons.

C. Organization

The rest of the paper is organized as follows. We begin with
some technical preliminaries in Section II, followed by a de-
scription of the single-group multicasting problem in Section III.
Our problem formulation is presented in Section IV, while
Section V describes the overall SCA approach and the proposed
methods for solving each subproblem. Simulation results are
provided in Section VI. Conclusions are drawn in Section VII.

D. Notation

Superscript H is used to denote the Hermitian (conjugate)
transpose of a vector/matrix, while T denotes plain transposi-
tion. Capital boldface is reserved for matrices, while vectors are
denoted by small boldface. Scalars are represented in the normal
face, while calligraphic font is used to denote sets. The set of
natural numbers is represented by N. We denote the N−dime-
nsional real and complex Euclidean spaces by RN and CN re-
spectively. The convex hull of a finite number of points {xi}N

i=1
is denoted as conv(xi |∀ i = {1, · · · , N}). The domain of a
function f : RN → R is defined as domf = {x ∈ RN |f(x) <
+∞}. If f(.) is differentiable, its gradient operator is denoted
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by ∇(f(.)); otherwise, ∂f(.) denotes the subdifferential opera-
tor of f . For general f (differentiable or non-differentiable), the
directional derivative at a point x in the direction d is given by
f ′(x;d). For a set X ⊂ RN , we use X̄ to denote its closure and
∂X to represent its boundary. Finally, the empty set is denoted
by ∅.

II. PRELIMINARIES

We will use the following standard definitions from convex
analysis [11].

� Let f : Rn → R denote a single-valued, convex, lower
semi-continuous function such that domf �= ∅. Then, the
Fenchel conjugate of f is defined as

f ∗(y) = sup
x∈Rn

xT y − f(x) (2)

Note that f ∗(y) is also convex since it corresponds to the
point-wise supremum of linear functions in y.

� Consider a multi-valued function F : Rn → Rn . F is said
to be monotone if

(F (x) − F (y))T (x − y) ≥ 0,∀x,y ∈ domF (3)

For the special case of n = 1, (3) implies that F is a mono-
tonically increasing function. Thus (3) can be interpreted
as an extension of the concept of monotonicity to the gen-
eral case of n ≥ 1. As an example, the gradient of a convex,
differentiable function is monotone.

� A multi-valued function F is said to be strongly monotone
with parameter σ ∈ R > 0 if

(F (x) − F (y))T (x − y) ≥ σ‖x − y‖2
2 ,∀ x,y ∈ domF

(4)
As an example, the gradient of a strongly convex, differ-
entiable function is strongly monotone.

� Let y ∈ Rn and X ⊆ Rn be a set. Then the distance of the
point y from the set X is defined as

d(y,X ) = inf
x∈X

‖y − x‖2 (5)

III. SINGLE-GROUP MULTICAST BEAMFORMING

Consider a downlink transmission scenario where a single
base station (BS) equipped with N antennas wishes to trans-
mit common information to a group of M single-antenna users
over the same frequency band. Assuming perfect channel state
information (CSI) is available at the BS, the goal of multicast
beamforming is to exploit this knowledge and the spatial diver-
sity offered by the multiple transmit antennas to steer transmitted
power towards the group of desired users while limiting leak-
age to nearby co-channel users and systems [4]. Let w ∈ CN

denote the desired beamforming vector and hm ∈ CN denote
the downlink channel between the BS and the mth user, which
is modeled as complex, random vector that is flat in frequency
and quasi-static in time. Using a unit-norm beamformer, the
BS transmits a zero-mean , unit-variance, common information
bearing signal x to all M users. The corresponding received
signal at the mth user is given by

ym = wH hm x + zm , ∀ m ∈ M (6)

where zm is zero-mean, wide-sense stationary additive noise at
the mth receiver with variance σ2

m , and is assumed to be inde-
pendent of x and hm . The received signal-to-noise ratio (SNR)

at the mth user is then given by |wH hm |2
σ 2

m
= wH Rmw, where

Rm := hm hH
m

σ 2
m

� 0,∀ m ∈ M. Since all users are required to
decode the same information bearing signal, the maximum com-
mon data rate attainable is determined by the minimum SNR.
Hence, the objective is to maximize the minimum received SNR
subject to unit-norm transmit sum power constraints, which
leads to the following max-min fair formulation

max
w∈CN

min
m∈M

wH Rmw (7a)

s.t. ‖w‖2 ≤ 1 (7b)

which is a non-convex QCQP problem of the form of (1). When
M ≥ N , (7) is NP–Hard [4]. Another variant of (7) seeks to
minimize the transmitted power subject to user-specific quality
of service (QoS) guarantees which are formulated in terms of
minimum received SNR per user. From an optimization point
of view, the two formulations are essentially equivalent [4].

Several algorithms have been proposed for obtaining ap-
proximate solutions to (7), ranging from SDR followed by
randomization [4], to alternating maximization [17], and SCA
[18], [19] (applied to the QoS version), which exhibit the best
overall performance. Several low complexity algorithms also
exist [20]–[22], although they are unable to match the perfor-
mance of SCA. In [23], it was proposed to approximate (7) by
a proportionally fair formulation and a first-order based Mul-
tiplicative Update (MU) algorithm was introduced, which was
demonstrated to attain performance comparable to that of SCA
at much lower complexity. This algorithm is the current state-
of-the-art for solving (7) in the traditional multicasting scenario
(i.e., when M ≥ N ).

Recently, Massive MIMO [24], [25], which refers to the con-
cept of equipping cellular base stations with a very large number
of transmit antennas, has emerged as a very promising paradigm
for possible implementation in a future 5G wireless broadband
standard [26], [27]. When considering the multicasting problem
in the context of such a scenario (i.e., when M < N ), it is more
practical to replace the transmit sum power constraint (7b) by
per antenna power constraints (PAPCs), since every antenna in
a large scale array will be equipped with its own power ampli-
fier, whose linearity is the performance limiting factor. Hence
the single-group multicasting problem in the Massive MIMO
setting can be expressed as [30]

max
w∈CN

min
m∈M

wH Rmw (8a)

s.t. |w(i)|2 ≤ Pi, ∀ i = 1, 2, · · · , N (8b)

where Pi denotes the power constraint for the ith transmit an-
tenna, ∀ i = 1, 2, · · · , N . Although (8) is a non-convex opti-
mization problem, we are currently not aware of any result
which establishes it as being NP–Hard. Note that (8) is a QCQP
problem of the form (1), since computing the projection onto the
set of constraints (8b) decouples into computing the projection
of each element of w onto its corresponding element-wise con-
straint, which admits a closed form solution. When N is large
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(i.e., of the order of hundreds), then solving (8) via SDR or
SCA (where each convex subproblem is solved using standard
interior point methods) is very computationally demanding.

IV. PROBLEM FORMULATION

As a first step, we convert (1) from the complex domain to the
real domain. Define the variables x̃ := [xT

r ,xT
i ]T ∈ R2N , xr =

Re{x},xi = Im{x} and the matrices Ãm ∈ R2N ×2N as

Ãm =

[
Re{Am} − Im{Am}
Im{Am} Re{Am}

]
, ∀ m ∈ M (9)

Note that Am � 0 if and only if Ãm � 0, ∀ m ∈ M. Hence,
(1) can be equivalently expressed in terms of real variables as

max
x̃∈R2 N

min
m∈M

x̃T Ãm x̃ (10a)

s.t. x̃ ∈ F̃ (10b)

where F̃ is the representation of the feasible set F in terms of
real variables.

We now reformulate the problem into the following equivalent
form.

max
x̃∈R2 N

min
m∈M

x̃T Ãm x̃

s.t. x̃ ∈ F̃
⇔

min
x̃∈R2 N

− min
m∈M

x̃T Ãm x̃

s.t. x̃ ∈ F̃

⇔
min

x̃∈R2 N
max
m∈M

x̃T (−Ãm )x̃

s.t. x̃ ∈ F̃
Defining Ām := −Ãm , ∀ m ∈ M, we finally obtain

min
x̃∈R2 N

max
m∈M

x̃T Ām x̃ (11a)

s.t. x̃ ∈ F̃ (11b)

Henceforth, we will work with this formulation. Note that the
problem still remains non-convex since the point-wise maxi-
mum of concave functions is not convex. We now present the
following approximation strategies for obtaining sub-optimal
solutions of (11) via low-complexity algorithms.

V. SUCCESSIVE CONVEX APPROXIMATION

SCA is an iterative procedure where the original non-convex
problem is approximated by a sequence of convex problems.
Starting from a feasible point x̃(0) ∈ F̃ , the algorithm proceeds
as follows. At every iteration n ≥ 0, we construct a convex
majorization function of the non-convex cost function (11a)
about the current iterate x̃ = x̃(n) in the following manner.

Define f(x̃) := max
m∈M

um (x̃), where we have um (x̃) :=

x̃T Ām x̃, ∀m ∈ M. Since um (x̃) is concave ∀m ∈ M, on
locally linearizing um (x̃) about the point x̃ = x̃(n) , we obtain
the following upper bound.

um (x̃) ≤ um (x̃(n)) + ∇um (x̃(n))T (x̃ − x̃(n))

= (2Ām x̃(n))T x̃ − x̃(n)T Ām x̄(n)

= c(n)T
m x̃ + d(n)

m ,∀m ∈ M (12)

where c(n)
m := 2Ām x̃(n) ∈ R2N , d

(n)
m := −x̃(n)T Ām x̃(n) ∈

R, ∀m ∈ M.
Define v(x̃, x̃(n)) := max

m∈M
c(n)T

m x̃ + d
(n)
m . It then follows

that v(x̃, x̃(n)) possesses the following properties.
(A1) v(x̃, x̃(n)) is a convex function in x̃ (being piecewise

linear).
(A2) v(x̃, x̃(n)) is continuous in (x̃, x̃(n)), but non-

differentiable in x̃.
(A3) v(x̃(n) , x̃(n)) = f(x̃(n)), ∀ x̃(n) ∈ F̃
(A4) v(x̃, x̃(n)) ≥ f(x̃), ∀ x̃, x̃(n) ∈ F̃
Properties (A3) and (A4) together imply that the piecewise

linear function v(x̃, x̃(n)) is an upper bound of the original
function f(x̃) which is tight at x̃ = x̃(n) . In every iteration n,
we replace f(x̃) by its piecewise linear approximation about
x̃(n) to obtain the non-smooth, convex subproblem

min
x̃∈R2 N

max
m∈M

c(n)T
m x̃ + d(n)

m (13a)

s.t. x̃ ∈ F̃ (13b)

The overall algorithm is given by

Algorithm 1: SCA.

Initialization: Randomly generate a starting point x̃(0) ∈ F̃
and set n := 0.
Repeat

• Compute x̃(n+1) ∈ arg min
x̃∈F̃

v(x̃, x̃(n))

• Set n := n + 1.
Until termination criterion is met

Note that a feasible starting point can always be determined
trivially since, by our assumption, F̃ is a simple, convex set.
Furthermore, we have the following chain of inequalities

f(x̃(n+1)) ≤ v(x̃(n+1) , x̃(n)) ≤ v(x̃(n) , x̃(n)) = f(x̃(n)),

∀n = 0, 1, · · · , (14)

The first inequality stems from (A4), whereas the second in-
equality follows since x̃n+1 is an optimal solution of v(x̃, x̃(n)),
and the last equality is due to (A3). As a result, it can easily be
seen that the algorithm produces a sequence of iterates with
monotonically non-increasing cost. In addition, we have the
following result, which establishes that the algorithm is also
provably convergent.

Proposition 1: The iterates generated by Algorithm 1 glob-
ally converge to the set of d-stationary solutions of (11); i.e., we
have

lim
n→∞ d(x̃(n) , F̃∗) = 0

where F̃∗ is the set of d-stationary solutions of (11).
Proof: The proof is deferred to Appendix A. �
The main computational cost incurred is in solving a sub-

problem of the form (13) at each iteration. Since (13) does not
have a closed form solution, we must resort to iterative methods
for solving each SCA subproblem.
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The standard procedure for solving (13) is to first transform
it into its epigraph representation, which yields the following
smooth optimization problem

min
t∈R,x̃∈R2 N

t (15a)

s.t. c(n)T
m x̃ + d(n)

m ≤ t,∀m ∈ M (15b)

x̃ ∈ F̃ (15c)

Problem (15) can be cast as a Second-order Cone Programming
(SoCP) problem, and solved using interior point methods at

a worst case computational complexity of O(N 3
√

M + |F̃ |)
[31], where |F̃ | is the smallest number of constraints required
to define F̃ (e.g., |F̃ | = 1 in the traditional multicasting sce-
nario while |F̃ | = N in the Massive MIMO setting). Coupled
with the fact that each such problem has to be solved multi-
ple times, it is clear that the overall cost incurred is expensive
and can become a serious computational burden for large M or
(especially) N . In hindsight, the high computational cost stems
from equivalently reformulating (13) as a smooth optimiza-
tion problem (15). This forces us to consider developing low-
complexity alternatives for efficiently solving each non-smooth
subproblem (13).

One may consider using projected sub-gradient methods [32],
[33] for solving (13), which are well suited for minimizing
non-differentiable convex functions subject to simple convex
constraints. These methods possess the desirable property of
having low per-iteration complexity in contrast to interior-point
methods. The main drawback of using such methods is their
slow convergence rate, which ultimately limits the attainable
accuracy. Indeed, if the constraint set is compact, then for ap-
propriately chosen step-sizes, the number of iterations required
to obtain an ε optimal solution 3 is upper bounded by O( 1

ε2 ). Fur-
thermore, from results in Information-Based Complexity The-
ory [34], it is known that the number of iterations required to
construct an ε optimal solution by a FOM, with knowledge of
the value and subgradients of the cost function only, is no less
than O( 1

ε2 ).
Since the iteration outer bound of projected subgradient meth-

ods matches this lower bound, they are “order” optimal, which
would seem to indicate that one cannot devise a FOM with a
faster convergence rate for solving problems of the form (13).
However, it is important to remember that projected subgra-
dient does not utilize any specific structure the problem may
possess. This implies that it may indeed be possible to devise
FOMs which explicitly exploit problem structure to achieve ε-
optimality in fewer iterations. Note that this observation is not
a contradiction of the results of [34], since such FOMs are not
oblivious to problem-specific structure.

We now demonstrate that the cost function of (13a) pos-
sesses specific structure which can be exploited. First, we de-
fine the matrix C(n) := [c(n)

1 , · · · , c(n)
M ]T ∈ RM ×2N and the

vector d = [d(n)
1 , · · · , d

(n)
M ]T ∈ RM . Then, v(x̃, x̃(n)) can be

3Here, we define ε optimality in terms of the cost function.

equivalently expressed as

v(x̃, x̃(n)) = max
m∈M

c(n)T
m x̃ + d(n)

m (16a)

= max
ỹ≥0,1T ỹ=1,

ỹ∈RM

(C(n) x̃ + d(n))T ỹ (16b)

To see that this holds, note that (16b) corresponds to maximizing
a linear function over the M−dimensional probability simplex.
Hence, the maximum is attained at one of the vertices of the
simplex, which are given by the canonical basis vectors of RM .
From the definition of C(n) and d(n) , it is then evident that the
equivalence holds. Defining φ(n)(x̃, ỹ) := (C(n)x̃ + d(n))T ỹ
and ΔM as the M−dimensional probability simplex, (13) can
be equivalently reformulated as

min
x̃∈R2 N

max
ỹ∈ΔM

φ(n)(x̃, ỹ) (17a)

s.t. x̃ ∈ F̃ (17b)

This special problem structure is the cornerstone of our
algorithmic approach for solving (17), as it is well suited for
the application of several specialized FOMs. We now discuss
methods available in the existing optimization literature which
are capable of solving problems of the form (17) efficiently.

A. Smoothing via Conjugation

We first point out that one can consider using the log-sum-
exp function as a smooth surrogate for the cost function of (13),
since the log-sum-exp can be interpreted as a differentiable
approximation of the point-wise maximum function [35, p. 72].
We now show that it is possible to rigorously derive a more
general result.

In his seminal work [12], Nesterov considered the following
problem

min
x∈Rn

q(x) (18a)

s.t. x ∈ C (18b)

where C ⊆ Rn is a simple, compact, convex set and q : Rn → R
is a non-differentiable, Lipschitz continuous convex function
which admits the following representation

q(x) = sup
y∈dom p

((Cx + d)T y − p(y))

= p∗(Cx + d) (19)

where C ∈ Rm×n ,d ∈ Rm , p : Rm → R is a closed, convex
function with bounded domain and p∗(x) denotes the Fenchel
conjugate of p(y). Hence, q(x) belongs to the class of non-
differentiable convex functions which can be expressed as
Fenchel conjugates of other convex functions. Nesterov’s tech-
nique for solving (18) is based on smoothing-constructing a
smooth approximation of q(x) which possesses a Lipschitz con-
tinuous gradient, followed by minimizing the approximation by
an accelerated FOM [36]. We now succinctly summarize the
details of this technique as presented in [37].

Let r(y) be a continuous, strongly convex function defined
over the closure of the domain of p such that inf

y∈dom p
r(y) = 0.
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Then, consider the function

qμ(x) = sup
y∈dom p

((Cx + d)T y − p(y) − μr(y))

= (p + μr)∗(Cx + d) (20)

where (p + μr)∗(x) is the Fenchel conjugate of the strongly
convex function (p + μr)(y) and μ ∈ R > 0. Nesterov estab-
lished that the function qμ(x) possesses the following properties.

(B1) qμ(x) is well defined and differentiable at all x, and
∇qμ(x) is Lipschitz continuous with Lipschitz constant
Lμ ∝ 1

μ .
(B2) qμ(x) ≤ q(x) ≤ qμ(x) + μD, where D = sup

y∈dom p
r(y).

Hence, qμ(x) can be interpreted as a smooth approximation
of q(x), where μ is a parameter which controls the level of
smoothing. Replacing q(x) by qμ(x) in (18), we obtain the
smooth optimization problem

min.
x∈Rn

qμ(x) (21a)

s.t. x ∈ C (21b)

which can be solved to a numerical accuracy of εμ in O(
√

Lμ

εμ
)

iterations using an accelerated FOM [12], [36]. It can also be
shown that we have

q(x) − q∗(x) ≤ qμ(x) − q∗μ(x) + μD (22)

where q∗(x) and q∗μ(x) denote the optimal values of (18) and
(21) respectively. If we define εμ = qμ(x) − q∗μ(x), then from
(22) it is evident that an ε-optimal solution of (18) can be ob-
tained by solving (21) to a numerical accuracy of εμ = ε − μD;
i.e., the smooth approximation (21) is solved to a higher degree
of accuracy than the original non-smooth problem (18).

The role of the smoothing parameter μ is now discussed.
Clearly, a smaller μ results in less smoothing which corresponds
to a more accurate approximation of q(x), but results in more
iterations required to solve (21) via an accelerated FOM since
Lμ is large. On the other hand, a larger μ produces a more
smooth approximation (since Lμ is small), but results in having
to solve (21) to a higher degree of accuracy in order to obtain an
ε-optimal solution of (18). Overall, for a given ε, if we choose
μ = ε

2D , it can be shown that using an accelerated FOM to
solve (21), one can obtain an ε-optimal solution of (18) in no
more than O( 1

ε ) iterations, which represents an order of mag-
nitude improvement over the O( 1

ε2 ) iterations required by sub-
gradient methods.

From (16), it is clear that Nesterov’s smoothing technique
can be applied to solve (17). Define the function r(ỹ) :=∑M

m=1 ỹm log ỹm + log M , which is continuous and strongly
convex everywhere over ΔM . Then, the smooth approximation
of v(x̃, x̃(n)) is given by

vμ(x̃, x̃(n)) = sup
ỹ∈ΔM

(C(n)x̃ + d(n))T ỹ − μr(ỹ)

= μ log

(
M∑

m=1

exp

(
c(n)T

m x̃ + d
(n)
m

μ

))
− μ log M

(23)

where μ ∈ R > 0 is the smoothing parameter. Note that if we
set μ = 1 and neglect the last term, we re-obtain the log-sum-
exp function. Replacing v(x̃, x̃(n)) by vμ(x̃, x̃(n)) in (17), our
optimization problem becomes

min.
x̃∈R2 N

log

(
M∑

m=1

exp

(
c(n)T

m x̃ + d
(n)
m

μ

))
(24a)

s.t. x̃ ∈ F̃ (24b)

which is a smooth optimization problem, and can be solved using
an accelerated FOM. Utilizing Nesterov’s smoothing technique
to solve each SCA subproblem, the overall SCA algorithm is
given by

Algorithm 2: Nesterov SCA.
Initialization: Randomly generate a feasible starting point
x̃(0) ∈ F̃ . Set n := 0.
Repeat

• Compute x̃(n+1) ∈ arg min
x̃∈F̃

vμ(x̃, x̃(n)) using an

accelerated FOM.
• Set n := n + 1.

Until termination criterion is met.

The per-iteration cost of an accelerated FOM is dominated
by the cost of forming the gradient (since all projections can
be computed in closed form), which incurs a modest cost of
O(MN) flops in our case. In order to obtain further savings in
computation, at each SCA iteration n, one can warm-start the
accelerated FOM with the current iterate x̃(n) .

B. Convex-Concave Saddle Point Reformulation

The following technique is attributed to Nemirovski [13].
Let X ⊂ Rn ,Y ⊂ Rm be convex, compact sets and let φ :
Rn × Rm → R be a continuous function which is convex in
x ∈ Rn and concave in y ∈ Rm . Define the function g(x) =
max
y∈Y

φ(x,y) and consider the following problem

min
x∈X

g(x) = min
x∈X

max
y∈Y

φ(x,y) (25)

From Sion’s minimax equality theorem [38], we have that

min
x∈X

max
y∈Y

φ(x,y) = max
y∈Y

min
x∈X

φ(x,y) (26)

which implies that the optimal solution z∗ = (x∗,y∗) ∈ X ×
Y := Z of (25) corresponds to a saddle point of φ(x,y), i.e.,
we have

φ(x∗,y) ≤ φ(x∗,y∗) ≤ φ(x,y∗)∀ (x,y) ∈ X × Y (27)

Given a candidate solution z̄ = (x̄, ȳ) ∈ Z , its degree of sub-
optimality can be evaluated via the following primal-dual gap

εsad(x̄, ȳ) = max
y∈Y

φ(x̄,y) − min
x∈X

φ(x, ȳ) (28)
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Using (28), we can obtain the following inequality

g(x) − min
x∈X

g(x) = max
y∈Y

φ(x,y) − min
x∈X

max
y∈Y

φ(x,y)

≤ max
y∈Y

φ(x,y) − min
x∈X

φ(x,y)

= εsad(x,y) (29)

Hence, the x component of a point (x,y) ∈ Z for which
εsad(x,y) ≤ ε also corresponds to an ε-optimal solution of
(25). The overall problem of determining a saddle point z∗ =
(x∗,y∗) ∈ Z of φ(x,y) can be cast as solving the associated
variational inequality

Ψ(z∗)T (z − z∗) ≥ 0, ∀ z ∈ Z (30)

where we define the saddle-point operator Ψ as

Ψ(z) := Ψ(x,y) =

[
∇xφ(x,y)

−∇yφ(x,y)

]
(31)

In addition, it can be shown that Ψ is monotone and Lipschitz
continuous on Z (see [13]). The field of variational inequalities
is a well studied subject which finds application in diverse ar-
eas (see [39] and references therein) and can be analyzed using
tools from fixed-point theory. Hence, one can attempt to solve
(30) by a fixed-point iteration, such as the generalized projected
gradient method [40]. However, the convergence of this method
is not guaranteed (see [40] for counter-examples), unless Ψ is
strongly monotone. This restriction can be overcome by using
a modified version of the method, known as the extragradient
algorithm [41], which only requires the assumption of mono-
tonicity and Lipschitz continuity of Ψ to guarantee convergence
to the solution of (30).

The idea of classical projected gradient descent was extended
to non-Euclidean geometries by the Mirror Descent algorithm
[42], [43], which uses a distance generating function to exploit
the specific geometry of the constraint set. In [13], Nemirovski
proposed a variant of the Mirror Descent algorithm, known as
the Mirror-Prox algorithm, for solving variational inequalities of
the form (30), which can be interpreted as a generalization of the
extragradient algorithm to non-Euclidean geometries. We now
summarize the details of the Mirror-Prox algorithm as presented
in [44, Section 5.2.3].

Let the sets X and Y be endowed with norms ‖.‖X and
‖.‖Y respectively. Assume that φ(x,y) is (β11 , β12 , β21 , β22)-
smooth in the following sense.

‖∇xφ(x,y) −∇xφ(x′,y)‖X ,∗ ≤ β11‖x − x′‖X , (32a)

‖∇yφ(x,y) −∇yφ(x,y′)‖Y,∗ ≤ β22‖y − y′‖Y , (32b)

‖∇xφ(x,y) −∇xφ(x,y′)‖X ,∗ ≤ β12‖y − y′‖Y , (32c)

‖∇yφ(x,y) −∇yφ(x′,y)‖Y,∗ ≤ β21‖x − x′‖X , (32d)

∀ z = (x,y) ∈ Z, z′ = (x′,y′) ∈ Z
where ‖.‖X ,∗ and ‖.‖Y,∗ denote the dual norms of ‖.‖X and ‖.‖Y
respectively. Define ΦX (x) to be a mirror map for X , which
possesses the following properties [44, Section 4.1]

(C1) ΦX : DX → R, whereDX ⊂ Rn is a non-empty, convex
open set which contains X in its closure (i.e., X ⊂ DX )
and X ∩ DX �= ∅.

(C2) lim
x→∂DX

‖∇ΦX (x)‖ → ∞
(C3) ΦX (x) is strongly convex and continuously differen-

tiable on DX .
(C4) The Bregman Divergence associated with ΦX is

defined as

DΦX (x,x′) := ΦX (x) − ΦX (x′) −∇ΦX (x′)T (x − x′),

∀x,x′ ∈ DX (33)

Similarly, define ΦY(y) to be a mirror map for Y . We now
consider the mirror map Φ(z) = Φ(x,y) = ΦX (x) + ΦY(y)
for Z = X × Y , defined on D = DX × DY . Define β :=
max(β11 , β12 , β21 , β22) and α := 1

2β . The Mirror-Prox algo-
rithm is then given by the following steps

Algorithm 3: Mirror Prox.

Initialization: Define zj = [xT
j ,yT

j ]T ,wj = [uT
j ,vT

j ]T ,
Ψ(zj ) = [∇xφ(xj ,yj )T ,−∇yφ(xj ,yj )T ]T , and Ψ(wj ) =
[∇xφ(uj ,vj )T ,−∇yφ(uj ,vj )T ]T for j ≥ 0. Let z0 =
arg minz∈Z∩D Φ(z). Set j := 0,w0 = z0 .
Repeat

1) ∇Φ(w′
j+1) = ∇Φ(zj ) − αΨ(zj )

2) w′
j+1 = ∇Φ−1(∇Φ(zj ) − αΨ(zj ))

3) wj+1 = arg minz∈Z∩D DΦ(z,w′
j+1)

4) ∇Φ(z′j+1) = ∇Φ(zj ) − αΨ(wj+1)
5) z′j+1 = ∇Φ−1(∇Φ(zj ) − αΨ(wj+1))
6) zj+1 = arg minz∈Z∩D DΦ(z, z′j+1)
7) Set j := j + 1.

Until termination criterion is met.

Note that the functional∇Φ−1 exists and is well defined since
the gradient of a strongly convex function is strongly monotone.
In addition, the existence and uniqueness of the minimizers of
steps 3) and 6) follow from properties (C2) and (C3) of mirror
maps, respectively.

The overall algorithm consists of two iterations of Mirror
Descent. The first three steps of the algorithm (i.e., going from zj

to wj+1) correspond to a single step of Mirror Descent, whereas
in the subsequent three steps, a similar procedure is followed,
albeit with a slight difference; the algorithm again starts from
zj (instead of wj+1), but uses an operator evaluation at wj+1
to obtain zj+1 . If the mirror maps of X and Y are chosen to be
1
2 ‖x‖2

2 and 1
2 ‖y‖2

2 respectively, then it can be shown that Mirror-
Prox reduces to the extragradient algorithm of [41]. In [13],
Nemirovski established convergence of the ergodic average of
the iterates (xj ,yj ) generated by the algorithm. To be more
specific, he proved the following sub-optimality bound in terms
of the primal-dual gap.

εsad

(
1
T

T −1∑
j=0

xj ,
1
T

T −1∑
j=0

yj

)
≤ O

(
1
T

)
(34)
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Combining this result with (29) implies an iteration outer bound
of O( 1

ε ) for guaranteeing convergence to an ε-optimal solution
of (25).

Note that problem (17) fits the framework proposed by Ne-
mirovski, since it corresponds to a smooth, bilinear saddle-
point reformulation of the non-smooth problem (13). Define
Φ(x̃) = 1

2 ‖x̃‖2
2 and Φ(ỹ) =

∑M
m=1 ỹm log ỹm to be the mirror

maps for the sets F̃ and Ỹ := {ỹ ∈ ΔM }, respectively. Then,
the mirror map Φ(z̃) defined ∀ z̃ = (x̃, ỹ) ∈ Z̃ := F̃ × Ỹ is
given by

Φ(z̃) = Φ(x̃, ỹ)

= Φ(x̃) + Φ(ỹ)

=
1
2
‖x̃‖2

2 +
M∑

m=1

ỹm log ỹm (35)

from which it follows that

∇Φ(z̃) =

⎡
⎢⎢⎢⎣

x̃
log ỹ1 + 1

...
log ỹM + 1

⎤
⎥⎥⎥⎦,∇−1Φ(z̃) =

⎡
⎢⎢⎢⎣

x̃
exp(ỹ1 − 1)

...
exp(ỹM − 1)

⎤
⎥⎥⎥⎦ (36)

Furthermore, the Bregman Divergence associated with Φ(z̃) can
be expressed as

DΦ(z̃, z̃′) = Φ(z̃) − Φ(z̃′) −∇Φ(z̃′)T (z̃ − z̃′)

=
1
2
‖x̃ − x̃′‖2

2 +
M∑

m=1

ỹm log
ỹm

ỹ′
m

−
M∑

m=1

(ỹm − ỹ′
m )

(37)

where z̃ = (x̃, ỹ), z̃′ = (x̃′, ỹ′) ∈ D. Thus, the non-Euclidean
projection problem

min
z̃∈Z̃∩D

DΦ(z̃, z̃′)

= min
x̃∈F̃ ,

ỹ∈ΔM

1
2
‖x̃ − x̃′‖2

2 +
M∑

m=1

ỹm log
ỹm

ỹ′
m

−
M∑

m=1

(ỹm − ỹ′
m )

(38)

can be decomposed into the two problems

min
x̃∈F̃

1
2
‖x̃ − x̃′‖2

2 , (39a)

min
ỹ∈ΔM

M∑
m=1

ỹm log
ỹm

ỹ′
m

−
M∑

m=1

(ỹm − ỹ′
m ) (39b)

The first problem is an Euclidean projection onto F̃ , which can
be solved in closed form, while the second problem involves a
non-Euclidean projection onto the M−dimensional probability
simplex, where “distances” are measured using the unnormal-
ized Kullback-Leibler (KL) divergence. This problem admits a

simple closed form solution [44, p. 302] given by

ỹ =

⎧⎪⎨
⎪⎩

ỹ′, ỹ′ ∈ ΔM

ỹ′

‖ỹ′‖1
, otherwise

(40)

Furthermore, note that

Ψ(z̃) =

[
∇x̃φ(n)(x̃, ỹ)

−∇ỹφ(n)(x̃, ỹ)

]
=

[
(C(n))T ỹ

−(C(n)x̃ + d(n))

]
(41)

where the superscript n denotes the iteration index of the outer
SCA loop. Finally, from (32), it can be verified that for a
fixed n, we have β11 = 0, β22 = 0, β12 = β21 = L, where L =
max
m∈M

‖c(n)
m ‖2 is the Lipschitz constant of the functions c(n)T

m x̃ +

d
(n)
m ,∀m ∈ M. Thus, we obtain the step size α = 1

2L .
It now only remains to solve (17) according to the steps of

the Mirror-Prox algorithm (Algorithm 3) with the mirror maps
and saddle-point operator (along with the associated quantities)
as defined above. The cost of each iteration of the Mirror-Prox
algorithm is dominated by the formation of the saddle-point op-
erator Ψ(z̃), which requires only O(MN) flops; all projections
are again closed form operations. The overall SCA algorithm is
now given by

Algorithm 4: Mirror-Prox SCA.
Initialization: Randomly generate a feasible starting point
x̃(0) ∈ F̃ . Set n := 0.
Repeat
• Compute x̃(n+1) ∈ arg min

x̃∈F̃
max
ỹ∈ΔM

φ(n)(x̃, ỹ) using the

Mirror-Prox algorithm.
• Set n := n + 1.

Until termination criterion is met.

C. Alternating Direction Method of Multipliers

We now propose an alternative low complexity method for
solving each SCA subproblem. Define the indicator function of
the constraint set F̃ as

IF̃ (x̃) :=

{
0, x̃ ∈ F̃
∞, otherwise

(42)

Then, consider the following equivalent reformulation of (13)

min
x̃∈R2 N

v(x̃, x̃(n)) + IF̃ (x̃) (43a)

= min
x̃∈R2 N

ω(C(n)x̃, x̃(n)) + IF̃ (x̃) (43b)

where we have defined ω(z̃, x̃(n)) := max
m∈M

{z̃m + d
(n)
m } and

z̃ ∈ RM . Thus, the constrained minimization problem (13) is
equivalent to minimizing the sum of two non-smoooth, convex
functions. In order to ease the burden of notation, we suppress
the explicit dependence of ω(., .) on x̃(n) and equivalently ex-
press (43b) as

min
x̃∈R2 N

ω(C(n)x̃) + IF̃ (x̃) (44)
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Defining z̃ := C(n)x̃, we obtain the problem

min
x̃∈R2 N ,z̃∈RM

ω(z̃) + IF̃ (x̃) (45a)

s.t. C(n)x̃ − z̃ = 0 (45b)

which is in a form suitable for the Alternating Direction Method
of Multipliers (ADMM); a method which combines the benefits
of dual decomposition and augmented Lagrangian techniques
into a simple but powerful algorithm. The advantage of ADMM
is that it enables cost functions (which may be non-smooth) and
constraints to be handled separately via variable splitting. This
can yield very efficient updates that are amenable to distributed
implementation, while requiring mild conditions for achieving
convergence. The augmented Lagrangian of (45) is given by

Lρ(x̃, z̃,λ)

= ω(z̃) + IF̃ (x̃) + λT (C(n)x̃ − z̃) +
ρ

2
‖C(n)x̃ − z̃‖2

2 (46)

where λ ∈ RM is the dual variable and ρ is the penalty parameter
of the augmented Lagrangian. The ADMM updates for a given
subproblem (45) are then given by

x̃(n)
j+1 := arg min

x̃
Lρ(x̃, z̃(n)

j , λ
(n)
j )

= arg min
x̃

IF̃ (x̃) +
ρ

2
‖C(n) x̃ − z̃(n)

j + λ̃
(n)
j ‖2

2 (47a)

z̃(n)
j+1 := arg min

z̃
Lρ(x̃

(n)
j+1 , z̃, λ

(n)
j )

= arg min
z̃

ω(z̃) +
ρ

2
‖z̃ − C(n)x̃(n)

j+1 − λ̃
(n)
j ‖2

2

= prox ω
ρ
(C(n) x̃(n)

j+1 + λ̃
(n)
j ) (47b)

λ̃
(n)
j+1 := λ̃

(n)
j + C(n)x̃(n)

j+1 − z̃(n)
j+1 (47c)

where the subscript j = 0, 1, · · · is the ADMM iteration counter,
the superscript n is the SCA iteration counter, λ̃ := 1

ρ λ repre-
sents the scaled dual variable and in (47b), we have defined
the proximal operator [45] of a convex, proper, closed function
f : Rn → R as

prox f
ρ
(x) = arg min

y
f(y) +

ρ

2
‖y − x‖2

2 (48)

The update of z̃ can be computed efficiently since the proximal
operator of ω(.) can be evaluated via a bisection search (refer
to Appendix B). Although the proximal operator of IF̃ (.) can
be evaluated in closed form (being the Euclidean projection
operator for the simple set F̃ , which can be computed in closed
form), the update of x̃ has to be solved numerically due to the
presence of the matrix C(n) (unless C(n) is the identity matrix
or is orthogonal, neither of which hold in our case), which is
undesirable from a computational complexity standpoint. Thus,
we propose to use an inexact version of ADMM, known as
Linearized ADMM (L-ADMM)[45], [46], which is specifically
designed to solve problems of the form (44) using the proximal
operators of ω(.) and IF̃ (.) to update the primal variables. The

variable updates for the L-ADMM algorithm are given by

x̃(n)
j+1 := proxηIF̃

(x̃(n)
j − ηρC(n)T (C(n)x̃(n)

j − z̃(n)
j + λ̃

(n)
j ))

:= projF̃ (x̃(n)
j − ηρC(n)T (C(n)x̃(n)

j − z̃(n)
j + λ̃

(n)
j ))

(49a)

z̃(n)
j+1 := prox ω

ρ
(C(n)x̃(n)

j+1 + λ̃
(n)
j ) (49b)

λ̃
(n)
j+1 := λ̃

(n)
j + C(n)x̃(n)

j+1 − z̃(n)
j+1 (49c)

where the parameters η and ρ are chosen to satisfy 0 <
ηρ ≤ 1

‖C (n ) ‖2
2

[45, p. 158]. Note that the L-ADMM algo-
rithm differs from standard ADMM in the update of x̃ only,
which now involves evaluating the projection onto the set
F̃ and can be computed in closed form. In L-ADMM, the
standard update for x̃ is modified by replacing the term
ρ
2 ‖C(n)x̃ − z̃j‖2

2 in the augmented Lagrangian Lρ(x̃, z̃j , λj )
(46) by ρ(C(n)T C(n)x̃j − C(n)T z̃j )T x̃ + η

2 ‖x̃ − x̃j‖2
2 , i.e.,

linearization of ρ
2 ‖C(n)x̃ − z̃j‖2

2 about x̃j plus a quadratic reg-
ularization term. The result can be rearranged in the form of a
proximal operator as in (49a).

In [47], the following convergence result of L-ADMM can
be found. The authors reformulated the optimality condition of
(45) into a variational inequality of the form

find w∗ ∈ Ω (50a)

s.t. θ(u) − θ(u∗) + (w − w∗)T F (w∗) ≥ 0,∀w ∈ Ω (50b)

where we have defined u := [x̃T , z̃T ]T ,w := [x̃T , z̃T , λT ]T ,
θ(u) := ω(z̃) + IF̃ (x̃), Ω := R2N × RM × RM and F (w) =
[−(C(n)T λ)T , λT , (C(n) x̃ − z̃)T ]T . Let w̄j := 1

T +1

∑T
t=0 wj

where wj := [x̃T
j+1 , z̃

T
j+1 , λ

T
j+1]

T (here we drop the superscript
n for ease of notation). Then, the number of iterations required
so that

θ(u) − θ(ūj ) + (w − w̄j )T F (w̄j ) ≥ −ε,∀w ∈ Ω (51)

is O( 1
ε ) (in an ergodic sense) in the worst case. Meanwhile,

analysis of the per iteration cost of L-ADMM reveals that all the
required matrix-vector multiplications incur a cost of O(MN)
flops. The update of x̃ is in closed form, while for the update
of z̃, computing the proximal operator of ω(.) via bisection
search requires O(M log2(

D
εb

)) operations, where D is the initial
bisection interval and εb is the desired length of the final interval.
Hence, it follows that L-ADMM can be used to solve each SCA
subproblem efficiently. The overall SCA algorithm is given by

Algorithm 5: L-ADMM SCA.
Initialization: Randomly generate a feasible starting point
x̃(0) ∈ F̃ . Set n := 0.
Repeat
• Compute x̃(n+1) ∈ arg min

x̃∈R2 N
ω(C(n)x̃, x̃(n)) + IF̃ (x̃)

according to the L-ADMM updates (49).
• Set n := n + 1.

Until termination criterion is met.
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If we define p̃(n) := x̃(n) (where the superscript n is the
SCA iteration counter), then the nth L-ADMM subproblem
can be warm-started by initializing x̃(n)

1 = p̃(n) , z̃(n)
1 = z̃(n−1)

1 ,

λ̃
(n)
1 = λ̃

(n−1)
1 (here the subscript 1 denotes the L-ADMM

iteration counter). For the very first SCA iteartion, we use

z̃(0)
1 = C(0)p̃(0) , λ̃

(0)
1 = 0.

VI. NUMERICAL RESULTS

In order to benchmark the performance of our proposed low-
complexity SCA algorithms, we implemented a standard SCA
algorithm where each subproblem was cast as a SoCP problem
and solved with the MOSEK solver [48] in MATLAB using the
modeling language YALMIP [49] as a parser. We implemented
the Nesterov SCA algorithm in MATLAB using the optimiza-
tion toolbox TFOCS [50] to solve each SCA subproblem via the
accelerated FOM described in [36]. The Mirror-Prox SCA and
L-ADMM SCA algorithms were implemented in MATLAB by
straightforward coding. The Nesterov SCA and L-ADMM SCA
make use of the warm-starting strategies described previously.
For Nesterov SCA, we set the smoothing parameter μ = 1e−4 ,
while in L-ADMM, we set εb = 1e−6 , and, in each SCA
iteration, we let η = 1

ρ‖C (n ) ‖2
2

. The value of ρ used depended
on the scenario under consideration (i.e., traditional multicast
or Massive MIMO multicast). In both scenarios, the downlink
channels {hm}M

m=1 were modeled as random vectors drawn
from a complex, circularly symmetric, normal distribution with
zero mean and identity covariance matrix and the noise vari-
ance was set to be 1 for all users. The SCA algorithms were all
initialized from the same starting point and run for a maximum
of 20 iterations. For the FOM-based SCA algorithms, each sub-
problem was solved using 1000 iterations. All experiments were
carried out on a Windows desktop with 4 Intel i7 cores and 8
GB of RAM.

In a preliminary simulation, we considered a traditional multi-
casting scenario with N = 10 transmit antennas and M = 200
users. In this case, we set ρ = 0.1 in the L-ADMM method.
For initializing our SCA algorithms, we considered the prob-
lem of maximizing the average SNR, which can serve as
a reasonable starting point for further refinement [21]. In
[51], Lopez demonstrated that the average SNR maximization
problem in a multicasting scenario reduces to computing the
principal eigenvector of the normalized channel correlation ma-

trix H =
∑M

m=1
hm hH

m

σ 2
m

, and can be determined via the power
method. Using the Lopez initialization as a starting point for
our SCA algorithms, the results obtained after averaging over
200 channel realizations are depicted in Fig. 1, which plots the
average minimum SNR in dB as a function of the SCA iteration
index. It is observed that the FOM-based SCA algorithms attain
the same performance as the standard SCA algorithm which
uses the MOSEK solver to solve each subproblem. The timing
results are summarized in Table I. Taken together, we observe
that the Nemirovski SCA algorithm, which uses the Mirror-Prox
algorithm to solve each SCA subproblem, exhibits the best over-
all performance in terms of speed and max-min SNR objective
function. The Nesterov SCA and L-ADMM algorithms exhibit

Fig. 1. Comparison of average max-min SNR attained for N = 10 antennas,
M = 200 users (traditional multicasting).

TABLE I
TIMING RESULTS FOR TRADITIONAL MULTICASTING

Fig. 2. Comparison of average max-min SNR attained for N = 200 antennas,
M = 50 users (Massive MIMO multicasting).

slightly improved performance in terms of the objective value
attained, but are more expensive compared to Nemirovski SCA;
however, they are still less expensive compared to the standard
SCA algorithm.

We also carried out a similar experiment for Massive MIMO
multicasting, with N = 200 antennas and 50 users. In this sce-
nario, we replaced the sum power constraint by the PAPCs. We
set Pi = 0.33,∀ i ∈ {1, · · · , N}. A starting point that satisfies
the PAPCs was randomly generated and was used to initialize
the SCA algorithms. The value of ρ in the L-ADMM method
was set to 0.01. All results were averaged over 200 channel
realizations. The performance with respect to the value of the
objective function attained is shown in Fig. 2, while the timing
results are depicted in Table II. It can be seen that Nemirovski
SCA and L-ADMM SCA match the performance of standard
SCA in terms of average minimum SNR attained, but at much
lower complexity (Nemirovski SCA in particular). Nesterov
SCA did not perform as well in this regime with respect to
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TABLE II
TIMING RESULTS FOR MASSIVE MIMO MULTICASTING

Fig. 3. Traditional multicasting.

the objective value attained, and was also the most expensive
amongst the FOM-based SCA algorithms. From these initial
experiments, it is evident that using fast FOMs to solve the SCA
subproblems allows us to effect a very favorable performance-
complexity tradeoff, i.e., we attain the same performance as that
of an interior-point method based SCA algorithm, but at much
lower complexity.

We also carried out a more comprehensiveexperiment for
both multicasting scenarios. First, we considered a traditional
multicasting scenario where we fixed the number of transmit
antennas N = 25 and increased the number of users M from
50 to 500. The algorithm parameters were set to be the same
as previously indicated. We also added the MU algorithm in
[23], which uses proportional fairness as a surrogate for max-
min fairness, for comparison. Lopez initialization was again
used for all algorithms. The MU algorithm was run for 1000
iterations. All results were obtained by averaging across 200
channel realizations for each value of M . The average minimum
SNR attained (in dB) as a function of the number of users M
is shown in Fig. 3(a) while the timing results are depicted in

Fig. 4. Massive MIMO multicasting.

Fig. 3(b). From the figures, it is observed that Nesterov SCA
and L-ADMM SCA methods always attain the same average
minimum SNR as standard SCA, with Nemirovski SCA being
only slightly worse. In terms of execution time, it is observed
that as the number of users is increased, the time taken by
standard SCA increases considerably (by almost an order of
magnitude), while the execution times of the FOM-based SCA
methods remains relatively constant.

Next, a Massive MIMO multicasting scenario was considered
with M = 50 users, and the number of transmit antennas N was
increased from 50 to 500. The power budget of each antenna
was set to be Pi = 0.25,∀ i = {1, · · · , N}. We used the same
choice of algorithm parameters for Massive MIMO multicast as
described previously. As an additional performance benchmark,
we appropriately modified the MU algorithm to handle PAPCs
(see Appendix C for details). A randomly generated, feasible,
starting point was used to initialize all the algorithms. The MU
algorithm was run for 200 iterations in this case. All generated
results were averaged across 200 channel realizations. The av-
erage minimum SNR attained is shown in Fig. 4a, while the
average execution times are depicted in Fig. 4b. The figures
demonstrate the state-of-the-art performance and computational
gains offered by our proposed algorithms. The Nemirovski SCA
and L-ADMM SCA algorithms attain the same performance
as that of standard SCA but at significantly lower complexity.
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While the Nesterov SCA algorithm initially exhibits the best
performance (when N ≤ 150), it falls off as N is increased
further. In terms of complexity, it is also slower than the other
FOM-based SCA algorithms. Overall, as the number of an-
tennas is increased, the timing curves for the proposed SCA
algorithms increase very gracefully compared to that of the
standard SCA (showcasing the drawback of using interior-point
methods for solving large problems) and the MU algorithms.
The Nemirovski SCA algorithm effects the best performance-
complexity tradeoff in this regime.4

VII. CONCLUSIONS

We considered a special class of non-convex QCQP problems
which can be expressed as maximizing the point-wise minimum
of homogeneous, convex quadratics over a simple convex set.
The development of SCA algorithms was pursued for obtaining
high quality approximate solutions of this problem at low com-
plexity. Our approach involves iteratively solving a sequence of
convex approximations of the non-convex problem. Each sub-
problem is formulated as a non-smooth convex optimization
problem, and solved using specialized FOMs which leverage
the structure inherent in each subproblem to efficiently compute
solutions at low overall complexity. This endows the algorithms
with the ability to scale well to problems in high dimensions with
a large number of constraints. The proposed algorithms were
applied to the problem of single-group multicast beamforming.
Simulations demonstrated that the algorithms offer substantial
computational savings while attaining the same performance as
standard SCA algorithms using interior-point methods to solve
each SCA subproblem. These results are borne out of theoretical
worst-case complexity considerations, which prove complexity
reduction. Careful implementation of these algorithms in an ap-
propriate lower-level programming language has the potential
for deployment in real-time applications.

APPENDIX A
PROOF OF PROPOSITION 1

In this section, we discuss the convergence properties of
Algorithm 1. Our first goal is to establish that every limit point
x̃l of the iterates {x̃(n)}n∈N generated by Algorithm 1 is a
d-stationary point of (11); i.e., f ′(x̃l , d̃) ≥ 0 for all d̃ such
that x̃ + d̃ ∈ F̃ . In order to do so, we will resort to [7, The-
orem 1]. However, we first have to verify that the non-convex
cost function f(.) and its convex surrogate v(., .) satisfy the four
conditions laid out in [7, Assumption 1]. By virtue of proper-
ties (A2-A4), simple inspection reveals that all but one of these
conditions are apparently satisfied; the condition in question
being [7, Assumption A3], which requires that the directional
derivatives of f(.) and v(., .) are equal at the point of approxima-
tion. This condition is hard to check in general, and a sufficient
condition is proposed in [7, Proposition 1] under which it is
automatically satisfied. Unfortunately, this sufficient condition
does not hold in our case, which complicates matters. Never-

4In this case, the MU algorithm does not scale very well to large dimensions.
Hence, we defer from using it for last-mile refinement using Nemirovski SCA.

theless, by relying upon a different set of results borrowed from
variational analysis [11], it is indeed possible to verify that [7,
Assumption A3] is satisfied in our case, as we now show.

First, for ease of notation, we first introduce the definition
lm (x̃, x̃(n)) := c(n)T

m x̃ + d
(n)
m ,∀m ∈ M. Now, consider the di-

rectional derivative of v(x̃, x̃(n)) = max
m∈M

lm (x̃, x̃(n)), which,

being a convex function, admits the following representation

v′(x̃, x̃(n) ; d̃) = max
w̃∈∂v (x̃,x̃(n ) )

w̃T d̃ (52)

where ∂v(x̃, x̃(n)) = conv(∇li(x̃, x̃(n))|∀ i ∈ M(x̃)) and
M(x̃) := {i | li(x̃, x̃(n)) = v(x̃, x̃(n))} ⊆ M. We then have
that

v′(x̃, x̃(n) ; d̃)
∣∣∣∣
x̃= x̃(n )

= max
w̃∈∂v (x̃(n ) ,x̃(n ) )

w̃T d̃ (53)

where by construction of the surrogate function v(., .), we
now have ∂v(x̃(n) , x̃(n)) = conv(∇ui(x̃(n))|∀ i ∈ M(x̃)) and
M(x̃) := {i |ui(x̃(n)) = f(x̃(n))}. At this stage, it is fairly
obvious that if we can establish a similar relationship for the
directional derivative of f(.) at x̃ = x̃(n) , the proof is complete.
However, for non-convex functions, the representation (52) is
not valid in general, which prevents us from establishing the
desired result via the aforementioned arguments. Instead, under
additional assumptions on f (which will be shown to be implic-
itly satisfied), and by exploiting the fact that f is the point-wise
maximum of a finite number of smooth functions, we will utilize
a different line of reasoning to derive an expression for f ′(x̃; d̃),
which, interestingly, will turn out to be the same as (53) at the
point x̃ = x̃(n) .

Before we describe our approach in detail, we will require
the following definitions. Adopting the exposition of [11], the
difference quotient function associated with f at a point x̃ (where
f(x̃) is finite) and a direction d̃, is defined as

Δτ f(x̃)(d̃) :=
f(x̃ + τ d̃) − f(x̃)

τ
(54)

Clearly, we have

f ′(x̃; d̃) := lim
τ ↓0

Δτ f(x̃)(d̃) (55)

The above definition can be generalized to define a semideriva-
tive of f at x̃ for d̃ [11, Definition 7.20], which is given by

fs(x̃; d̃) := lim
τ ↓0,

d̃ ′→d̃

Δτ f(x̃)(d̃′) (56)

If the above limit exists, f is said to be semidifferentiable at x̃ for
d̃. If it holds for all d̃, then f is said to be semidifferentiable at
x̃. While f ′(x̃; d̃) is only concerned with the limiting behavior
of Δτ f(x̃)(d̃) along the ray {x̃ + τ d̃|τ ∈ R+}, the semideriva-
tive, loosely speaking, tests the behavior of Δτ f(x̃)(d̃) along
all curves from x̃ in the direction of d̃. Clearly, if fs(x̃; d̃) exists
and is finite, then f ′(x̃; d̃) = fs(x̃; d̃). However, the converse
is not true in general. When the existence of fs(x̃; d̃) is not
guaranteed, it is useful to work with subderivatives of f(x̃) [11,
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Definition 8.1], which always exist and are defined as

df(x̃)(d̃) = lim inf
τ ↓0,

d̃ ′→d̃

Δτ f(x̃)(d̃′) (57)

It is again evident that when fs(x̃; d̃) exists, we must have
fs(x̃; d̃) = df(x̃)(d̃) (since lim and lim inf coincide in this
case). In addition, if fs(x̃; d̃) is also finite, we obtain the fol-
lowing series of equalities

f ′(x̃; d̃) = fs(x̃; d̃) = df(x̃)(d̃) (58)

From (58), it can be inferred that it in order to obtain an ex-
pression for f ′(x̃; d̃), it suffices to show that fs(x̃; d̃) exists,
compute fs(x̃; d̃) (or possibly df(x̃)(d̃)) and verify that it is
finite valued. This is precisely what we now set out to establish
via the following claims.

Claim 1: The non-convex function f(x̃) = max
m∈M

um (x̃) is
semidifferentiable for all x̃ ∈ R2N .

Proof: Follows directly from [11, Exercise 10.27(c)] �
Hence, although f(x̃) is non-differentiable, the fact that it is

the point-wise maximum of a finite number of smooth functions
{um (x̃)}m∈M ensures that it is semidifferentiable. While this
result establishes the existence of semiderivatives of f(x̃), since
we are interested in minimizing f over a convex, compact set F̃ ,
we require certain regularity assumptions on f 5and F̃ 6 being
satisfied in order to proceed towards deriving an expression for
the semiderivatives of f . The following result establishes that
these regularity conditions are automatically satisfied in our
case.

Claim 2: The set F̃ is Clarke regular while f is subdifferentially
regular for all x̃ ∈ F̃ .

Proof: The first part follows directly from the fact that F̃ is
convex and then invoking [11, Theorem 6.4], while the second
part holds due to the point-wise max structure of f which enables
us to appeal to [11, Example 7.28]. �

Thanks to the above result, our overall convergence claims
only depend upon the aforementioned regularity conditions im-
plicitly; i.e., one does not have to check to see if they are verified;
they are automatically guaranteed to hold by Claim 2. With these
results in hand, we are now ready to state the main claim.

Claim 3: The subderivative of f for all x̃ ∈ F̃ can be expressed
as

df(x̃)(d̃) = max
i∈M(x̃)

∇ui(x̃)T d̃ (59)

where M(x̃) := {i |ui(x̃) = f(x̃)}. Furthermore, df(x̃)(d̃)
< ∞, ∀ x̃ ∈ F̃ and d̃ s.t. x̃ + d̃ ∈ F̃ .

Proof: The first part of the claim follows from the regularity
of f(x̃), ∀ x̃ ∈ F̃ , and then invoking [11, Exercise 8.31]. In
order to show the second part, by our assumption that F̃ is

5Here, by regularity of f , we mean that f satisfies the notion of subdifferential
regularity as defined in [11, Definition 7.25].

6By regularity of the set F̃ , we mean that F̃ satisfies Clarke regularity as
defined in [11, Definition 6.4].

compact, we have that diam(F̃) := sup
x,y∈F̃

‖x − y‖2 = D < ∞
for some D ∈ R+ . This enables us to write

∇ui(x̃)T d̃ ≤ ‖∇ui(x̃)‖2‖d̃‖2 = ‖Āi x̃‖2‖d̃‖2

≤ ‖Āi‖2‖x̃‖2‖d̃‖2

≤ ‖Āi‖2D
2 ,∀ i ∈ M(x̃)

⇒ max
i∈M(x̃)

∇ui(x̃)T d̃ ≤ D2 max
i∈M(x̃)

‖Āi‖2 < ∞ (60)

�
Taken together, our claims guarantee that fs(x̃; d̃) always exists
(Claim 1), establish that all requisite regularity conditions are
automatically satisfied by f and F̃ (Claim 2), and also provide
a characterization of df(x̃)(d̃), which is finite-valued over F̃
(Claim 3). Thus, it follows that the chain of equalities (58) hold
in our case, which allows us to directly write

f(x̃; d̃) = max
i∈M(x̃)

∇ui(x̃)T d̃

= max
w̃∈conv(∇ui (x̃)|

∀ i∈M(x̃))

w̃T d̃
(61)

Comparing the above expression with (53), it directly follows
that we have

f ′(x̃; d̃)
∣∣∣∣
x̃= x̃(n )

= v′(x̃, x̃(n) ; d̃)
∣∣∣∣
x̃= x̃(n )

(62)

which is the condition that we set out to verify. Note that, by
the feasibility of the iterates {x̃(n)}n∈N of Algorithm 1, (61)
always holds for every SCA iteration n.

Now that we have verified all four conditions listed in [7,
Assumption 1], it only remains to invoke [7, Theorem 1] to
claim that every limit point x̃l of {x̃(n)}n∈N is a d-stationary
point of (11). Of course, this is a weaker claim compared to what
we stated in Proposition 1, as it only guarantees convergence
along a subsequence of the iterates (provided that a convergent
subsequence exists in the first place). While the compactness of
F̃ guarantees the existence of such a convergent subsequence,
it also allows us to strengthen our result to achieve the desired
outcome via the following claim.

Claim 4: If F̃ is a compact set, then, under [7, Assumption 1],
the sequence of iterates {x̃(n)}n∈N satisfy

lim
n→∞ d(x̃(n) , F̃∗) = 0,

where F̃∗ is the set of d-stationary solutions of (11).

Proof: Follows directly from [7, Corollary 1]. �
This concludes the proof of Proposition 1.

Remark 1: While the proof of convergence requires comput-
ing an exact solution to each SCA subproblem, whether solving
the inner subproblems inaccurately via FOMs still results in
provable convergence is an open question. We point out that
we have used different FOMs (varying from primal methods to
primal-dual methods) to solve each SCA subproblem and thus,
each algorithm traces a different path through solution space.
This complicates matters in developing a unified convergence
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analysis of the various FOM based SCA algorithms. In [9], the
authors consider a proximal regularized version of Algorithm 1,
which is also provably convergent while allowing for inexact
solution of the inner subproblems. We speculate that these re-
sults can be adapted to our algorithmic setting as well (i.e., SCA
without the proximal term) to obtain iteration complexity esti-
mates required by each FOM to guarantee overall convergence
of the sequence of SCA iterates while using inexact solutions.
However, formally proving this conjecture is beyond the scope
of this paper. Nevertheless, as evidenced by our experiments,
the proposed algorithms with the prescribed stopping criteria
perform very admirably and offer state-of-the-art performance
(in terms of multicast rate) at low complexity, which make them
very appealing for use in practice.

APPENDIX B
PROXIMAL OPERATOR OF ω(.)

The results of this appendix are derived in a manner similar
to that in [45, Section 6.4]. Determining the proximal opera-
tor prox ω

ρ
(x) of the function ω(y) = max

m∈M
{ym + bm}, where

M = {1, · · · ,M}, requires one to solve the following convex
optimization problem

min
y

ω(y) +
ρ

2
‖y − x‖2

2 (63)

which can be represented in its epigraph form as the following
smooth optimization problem

min
y ,t

t +
ρ

2
‖y − x‖2

2 (64a)

s.t. ym + bm ≤ t, m = 1, · · · ,M (64b)

The KKT optimality conditions for (64) are given by

y∗
m + bm ≤ t∗, (65a)

η∗
m ≥ 0, (65b)

η∗
m (y∗

m + bm − t∗) = 0, (65c)

ρ(y∗
m − xm ) + η∗

m = 0, (65d)

M∑
m=1

η∗
m = 1 (65e)

where m ∈ M and η = [η1 , · · · , ηM ]T denotes the vector of
dual variables. If y∗

m + bm < t∗, then from the third condi-
tion, we have η∗

m = 0. Otherwise, if y∗
m + bm = t∗, then from

the fourth condition we obtain η∗
m = ρ(xm + bm − t∗). Since

η∗
m ≥ 0, we must have that

η∗
m = ρmax{xm + bm − t∗, 0} (66)

Substituting for η∗
m in the final KKT condition, we obtain the

equation

ρ

M∑
m=1

max{xm + bm − t∗, 0} = 1 (67)

which can be solved for t∗ via bisection using the initial inter-
val [minm{xm + bm} − (1/ρM),max

m
{xm + bm}]. Once t∗ is

determined, we can solve for y∗ = [y∗
1 , · · · , y∗

M ]T as

y∗
m = xm − max{xm + bm − t∗, 0}

= min{t∗ − bm , xm},∀m ∈ M (68)

The proximal operator of ω(.) is then given by

prox ω
ρ
(x) = y∗ (69)

APPENDIX C
MU ALGORITHM FOR MASSIVE MIMO MULTICASTING

In this appendix, we derive a variant of the MU algorithm
described in [23] for handling PAPCs in Massive MIMO mul-
ticasting. As a surrogate for the max-min fair problem (10),
consider the following proportionally-fair formulation

max
x̃∈R2 N

M∑
m=1

log (x̃T Ãm x̃ + δ) (70a)

s.t. x̃ ∈ F̃ (70b)

where δ ∈ R > 0. After expressing the set F̃ in terms of PAPCs,
we obtain the following non-convex problem

max
x̃∈R2 N

M∑
m=1

log (x̃T Ãm x̃ + δ) (71a)

s.t. x̃2(i) + x̃2(i + N) ≤ Pi,∀ i = 1, · · · , N (71b)

The MU algorithm proposes to solve (71) in the following itera-
tive manner. Starting from an initial feasible point x̃(0) , at each
iteration n ≥ 0, we construct the following first order surrogate
of h(x̃) :=

∑M
m=1 log (x̃T Ãm x̃ + δ) about the current iterate

x̃ = x̃(n)

h(x̃) ≈ h(x̃) + ∇h(x̃(n))T (x̃ − x̃(n)) (72)

by determining the first-order Taylor series expansion of h(x̃)
about x̃(n) . The gradient of h(x̃) is given by

∇h(x̃) :=
M∑

m=1

2Ām x̃
x̃T Ãm x̃ + δ

(73)

which corresponds to taking an inversely weighted combination
of the gradients of the functions um (x̃) = x̃T Ām x̃,∀m ∈ M,
with more emphasis placed on the gradients of those functions
um (x̃) which are small. This intuitively suggests that ∇h(x̃)
corresponds to a good search direction for attaining max-min
fairness. The update rule of our algorithm at each iteration n is
then given by

x̃(n+1) = arg max
x̃∈F̃

∇h(x̃(n))T (x̃ − x̃(n)) (74a)

= arg max
x̃2 (i)+ x̃2 (i+N )≤Pi ,

∀ i=1,··· ,N

∇h(x̃(n))T x̃ (74b)

Define g̃(n) := ∇h(x̃(n)). Then, the objective function of (74b)
can be expressed as

g̃(n)T x̃ =
2N∑
i=1

g̃(n)(i)x̃(i) =
N∑

i=1

ḡ(n)T
i x̄i (75)
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where ḡ(n)
i := [g̃(n)(i), g̃(n)(i + N)]T , x̄i := [x̃(i), x̃(i + N)]T ,

∀ i = 1, · · · , N . With the objective function represented in this
form, it is obvious that (74b) decomposes into N parallel prob-
lems of the form

x̄(n+1)
i = arg max

‖x̄ i ‖2
2 ≤Pi

ḡ(n)T
i x̄i =

√
Pi

ḡi

‖ḡi‖2
,∀ i = 1, · · · , N

(76)

From the vectors {x̄(n+1)
i }N

i=1 , the update vector x̃(n+1)
i can be

easily synthesized.
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