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Abstract—Acquiring channel state information (CSI) at the base
station (BS) is a critical requirement for successfully employing
transmit beamforming in multiantenna systems. In practice, chan-
nel estimation/quantization errors, feedback delays, and fast fading
can make it difficult to obtain accurate CSI at the BS. In this paper,
we consider an outage-based approach for transmit beamforming
in order to deal with the channel uncertainty at the BS. Our formu-
lation is applicable to both point-to-point transmit beamforming as
well as single-group multicasting scenarios. A key difference from
prior works is that we do not assume knowledge of the underly-
ing channel distribution; instead, stochastic approximation is used
for computing approximate solutions of a nonconvex stochastic
optimization problem via simple first-order methods (FOMs). We
evaluate the performance of our FOMs in two settings: First) where
we design a beamformer at the BS based on historical channel real-
izations collected over a relatively long time window before deploy-
ment, and second) in a post-deployment phase where we perform
incremental updates of our beamformer based on intermittent, de-
layed, or peer feedback. Simulation results reveal the effectiveness
of FOMs for our problem compared to other alternatives.

Index Terms—Downlink beamforming, outage minimization,
stochastic approximation, stochastic gradient methods.

I. INTRODUCTION

L INEAR transmit beamforming is a simple but potent
technique for enhancing the throughput of multiple-input

multiple-output (MIMO) systems by exploiting channel state
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information (CSI) at the base station (BS) [2]–[7]. In practical
wireless systems, acquiring accurate downlink channel estima-
tion at the BS in a timely manner can be a challenging task. This
is particularly the case in systems equipped with large transmit
antenna arrays, where the overhead in channel estimation can
be significant. Reducing the burden associated with CSI acqui-
sition in multi-antenna systems is currently an active area of
research [8]–[16].

Considering time-division duplex (TDD) systems, where up-
link and downlink channels occupy the same frequency band but
operate in different time slots, channel reciprocity is typically
assumed in order to obtain downlink CSI via uplink channel es-
timation. However, reciprocity is only an approximation, which
inevitably introduces errors in the channel estimates. Further-
more, the downlink estimate obtained at the BS is based upon
the uplink channel in the previous time slot, which gives rise
to errors in high-mobility scenarios. Meanwhile, in frequency-
division duplex (FDD) systems, users estimate the downlink
channel and provide low-rate quantized feedback to the BS,
which again results in errors. Feedback delays arising in high
mobility scenarios are an additional concern.

In order to mitigate the performance degradation stemming
from imperfect CSI, the design of robust approaches which
take into account channel uncertainty is well motivated and
has received considerable attention. Depending on the channel
uncertainty model and robust performance metric employed, ro-
bust designs for downlink transmit beamforming can be broadly
classified into the following categories: i) the channel model
is described by a set of nominal channel vectors subject to
unknown, bounded perturbations, and the performance metric
used aims to minimize the worst-case Quality-of-Service (QoS)
with respect to (w.r.t.) all possible perturbations [7], [17]–[24];
ii) the channel uncertainties are modeled as random variables,
and the expected value of QoS (expectation taken w.r.t. the dis-
tribution) is used as the performance metric; and iii) outage
based approaches [25]–[36], where the metric corresponds to
the actual QoS satisfying a desired performance threshold with
high probability. The worst-case approach in i) may result in a
very conservative design compared to ii), which can yield, on
average, higher throughput. The drawback of the latter approach
is that it can perform very poorly in instances of persistent deep
fading, which makes it unsuitable for use in delay-sensitive ap-
plications. Outage based approaches strike a favorable balance
between the first two, with the system designer being able to
vary the level of pessimism by changing the outage threshold.

In this paper, we adopt an outage based design approach for
transmit beamforming. Our formulation can be applied to de-
scribe the following two downlink transmission scenarios: a
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point-to-point multiple-input single-output (MISO) setting and
a multi-user MISO setting where the users form a single mul-
ticast group. For the purposes of exposition, we explain our
approach from the perspective of the former setting, with rele-
vant remarks for the multicasting case where necessary.1 Outage
based MISO beamforming has applications in satellite and mil-
itary communications [38], radar settings [39], and is also a
potential component of ultra-reliable low latency communica-
tion (URLLC) systems in future 5G networks [40].

Our design formulation entails minimizing the outage prob-
ability (i.e., the probability that the received SNR falls below
a certain threshold) subject to transmit power constraints. Such
a model was previously considered in [30], where the channel
vectors were modeled as being drawn from a Gaussian mixture
model (GMM), whose parameters are perfectly known at the
BS. In a major departure from this work2, in the present paper,
we do not assume knowledge of the channel distribution. Rather
than fitting a model for the channel distribution first, here we
seek to minimize outage directly from available channel real-
izations without using any prior knowledge. Using the fact that
the probability of an event can be equivalently expressed as the
expectation of the indicator function of said event, we equiva-
lently reformulate our problem as a stochastic optimization (SO)
problem. Given the lack of knowledge of the underlying channel
distribution, we aim to bring to bear tools from stochastic ap-
proximation [41]–[43] upon our problem. Additional examples
of stochastic optimization approaches in the wireless communi-
cation literature include [37] which deals with optimization of
long-term ergodic rates under queue stability constraints; and
[36], which considers minimizing power subject to outage con-
straints in a multiuser interference setting with single transmit
and receive antennas. [36] uses channel realizations to construct
many instantaneous inequalities in lieu of the outage constraints,
the idea being that if one satisfies all these inequalities then one
will avoid outage with a high probability. As the instantaneous
inequalities are linear in the link powers, the resulting problem
is convex3.

A formidable challenge in pursuing our approach, which is
geared towards approximating the outage cost function, arises
from the fact that the indicator function of the desired event
is non-convex and discontinuous, which prevents direct ap-
plication of algorithmic techniques developed for stochastic
approximation. In order to circumvent this issue, we design
two judicious smooth approximations of the indicator function,
which result in two surrogate formulations which are amenable
to stochastic gradient type methods. Both formulations are non-
convex however, which still makes it challenging to obtain high
quality sub-optimal solutions in polynomial-time. We consider
computing such approximate solutions for our problems in the
context of the following two settings. In the first setting, we as-
sume that the BS has collected a set of channel samples before
deployment, using which we construct a sample average approx-
imation of our SO problems, followed by application of simple

1The multicasting perspective has been explained at length in [30].
2and from the majority of previously considered outage based approaches.
3In our case, the approach of [36] would lead to nonconvex instantaneous

inequalities.

first-order methods (FOMs) for efficiently computing solutions.
In this case, no CSI is required at the BS post-deployment. We
also consider an alternate scenario corresponding to the post-
deployment phase, where assuming the availability of intermit-
tent, possibly outdated channel estimates at the BS provided
by the user or even other ‘peer’ users (with the same channel
distribution), we use streaming FOMs to compute solutions for
the SO problems in an online fashion.

As a baseline for comparison against the FOM based ap-
proach, we also devise a set of algorithms based on an approx-
imation of the cost function of the original SO problem using
Markov’s inequality. While this approach was originally pro-
posed in [30] for the Gaussian mixture distribution, here we
extend it to the case where the channel distribution is unknown
for both of the aforementioned settings. An extensive set of sim-
ulations is then carried out to compare the performance of all
methods in various settings.

Relative to the conference version [1] which only describes
the online setting, the journal version adds the offline case, a
detailed discussion on the convergence of the FOMs, additional
experiments for both offline and online cases, while also featur-
ing more comprehensive exposition.

The rest of the paper is organized as follows. Section II con-
tains a detailed description of our formulation and outlines our
proposed approach. Section III provides a description of the
FOMs we use for computing solutions of our SO problems,
while Section IV describes the algorithms based on approxima-
tion via Markov’s inequality. Experimental results are provided
in Section V and conclusions are drawn in Section VI.

The following notations are used throughout the paper. Ma-
trices and vectors are represented by bold upper-case and bold
lower-case characters, respectively, while calligraphic notation
is used to denote sets. Superscripts (·)T and (·)H stand for
the transpose and conjugate transpose, respectively. The short-
hand [M ] is used for the set {1, 2, · · · ,M}. We denote the
N -dimensional real and complex Euclidean space by RN and
CN , respectively. The operators �[·] and �[·] denote the real
and imaginary parts of a complex number, respectively, and
�·� stands for the ceiling operator. ‖ · ‖2 and | · | represent the
Euclidean norm and absolute value, respectively, while E[·] de-
notes the mathematical expectation operator. The set of natural
numbers is denoted by N.

II. MODEL AND PROBLEM FORMULATION

A. Model

We consider a single cell, MISO downlink beamforming sce-
nario, where a BS equipped with N transmit antennas serves a
single user with one receive antenna. The downlink channel can
be described as

y = hH ws + n (1)

where y ∈ C is the received signal at the user, h ∈ CN denotes
the instantaneous channel vector, and w ∈ CN is the beam-
former employed by the BS. In addition, s ∈ C is the transmit-
ted signal satisfying E{|s|2} = 1 and n ∼ CN (0, 1) represents
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complex, circularly symmetric, Gaussian noise of zero mean
and unit variance.

Assuming the availability of perfect, instantaneous CSI at
the BS, the beamformer which maximizes the instantaneous
received SNR subject to a transmit sum power constraint can be
computed as

w∗ = arg max
‖w‖2

2 ≤P
|wH h|2 =

√
P (h/‖h‖2) (2)

In this paper, we completely forego the assumption of the avail-
ability of instantaneous CSIT. While it is possible, in principle,
to estimate the downlink channel at the BS using estimation
techniques based upon either FDD or TDD modes of operation,
this comes at the expense of significant signaling and system
hardware overhead. Moreover, in practice, as a result of estima-
tion errors and feedback delays, exact CSI cannot be acquired
at the BS. If, however, the overhead associated with acquiring
CSI in a timely fashion is affordable at the BS, and the channel
varies slowly, then there is no need to consider a different crite-
rion. On the other hand, situations may arise where the channel
changes abruptly and cannot be tracked by the BS. This is the
case, for example, when the receiver suddenly turns a corner,
or enters an elevator, or in high mobility / Doppler scenarios,
or in intermittent communication scenarios (arising in IoT set-
tings), when phase/carrier/Doppler synchronization is suddenly
lost. Another example where the channel can change abruptly
arises at the boundary between cells, where a user enters a cell,
wanders over to the other, and returns again to the initial cell.
In such cases, it is undesirable to employ a beamformer design
criterion based on instantaneous SNR.

In order to account for such situations, we employ a prob-
abilistic model where the temporal variations of the downlink
channel {ht}∞t=0 correspond to different realizations drawn from
an unknown underlying distribution; i.e., we model h as a ran-
dom vector defined on a probability space (Ω,F , P ) where
Ω ⊆ CN denotes the sample space, F is a collection of subsets
of Ω forming a σ− field, and P is an unknown probability mea-
sure defined on F . Independence of the channel realizations can
be assumed although this is not necessary. As we show later
on, this condition can be weakened provided the channel pro-
cess satisfies appropriate ergodic mixing conditions. Under this
model, we propose to formulate our design criterion based on
minimizing the outage probability

min
w∈W

{
F (w) := Pr

(
|wH h|2 < γ

)}
(3)

where γ > 0 denotes the outage threshold and W ⊂ CN is a
simple4, convex, compact set. Particular examples of W in-
clude sum power constraints (SPCs) and per-antenna constraints
(PACs). For PACs, the constraint set W is defined as

W = {w ∈ CN | |w(n)|2 ≤ Pn ,∀ n ∈ [N ]} (4)

Under ergodic mixing conditions on the channel process, min-
imizing outage approximately maximizes the fraction of time
the downlink channel satisfies a desired SNR requirement.

4By simple, we mean that the Euclidean projection of a point onto W is easy
to compute.

Clearly, (3) is a more conservative design criterion compared
to (2). However, in the special case where the distribution is
known a priori at the BS, we point out that no instantaneous
CSIT is required to design w.

An important consideration in outage minimization is the
choice of distribution employed to describe the channel uncer-
tainty. A popular choice is to use a complex, circularly sym-
metric, Gaussian distribution; i.e., h ∼ CN (m,C). This is a
model that is relevant as long as the large scale channel pa-
rameters remain constant; i.e., for time scales on the order of
seconds. In order to perform outage minimization with this par-
ticular model, we refer the reader to Appendix A. For channels
which can change abruptly due to situations mentioned earlier,
a multi-modal distribution is a better description of the channel
uncertainty. The main focus of this manuscript is on performing
outage minimization with such distributions, which are valid
for longer time scales. In prior work [30], a minimum outage
criterion was proposed where the distribution was modeled as a
GMM whose parameters are known perfectly at the BS. In this
case, (3) admits the following interpretation: assuming J is the
number of kernels of the GMM, there are J possible channel
states where each state j ∈ [J ] is associated with a certain Gaus-
sian distribution of the channel vector and occurs with a certain
probability πj , where πj ≥ 0,∀ j ∈ [J ] and

∑J
j=1 πj = 1.

Remark 1: We briefly describe the same outage minimiza-
tion problem from the perspective of single-group multicasting
as detailed in [30]. Consider a scenario where a BS with N
antennas transmits a common information-bearing signal to a
group of K single receive antenna subscribers. In this context,
the outage formulation (3) can be motivated by the fact that
ideally, a subscriber should be able to join or leave the multicast
group without notifying the BS. Hence, the BS has to oper-
ate without knowing the users’ instantaneous channels as well
as the number of users participating in the current multicast
session. If a new subscriber wishes to join the current group,
then employing the criterion (3) maximizes the probability that
he/she will be served. Here again, the subscriber channel vectors
{hk}K

k=1 are modeled as random vectors drawn from an under-
lying distribution; i.e., all subscriber channels are assumed to
be statistically equivalent. In multicasting, subscribers are often
geographically clustered together in one of several service areas
(e.g., town squares, malls, campuses, etc.), which naturally mo-
tivates using a multi-modal distribution like a GMM to model
the channel uncertainty. Furthermore, if a large number of real-
izations are drawn from this distribution, then minimizing the
outage probability approximately corresponds to maximizing
the fraction of users that will be served.

B. Proposed Approach

Given channel realizations (e.g., historical data from mea-
surement campaigns), it is theoretically possible to accurately
approximate any distribution via a GMM. However this ap-
proach requires the BS to identify the parameters of the model,
which cannot be guaranteed using practical algorithms like
Expectation-Maximization (EM). Furthermore, even when the
parameters are perfectly known, algorithmic approaches for (3)
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may require evaluation of computationally intensive integrals
associated with the cost function and its higher-order deriva-
tives. Indeed, in [30], algorithmic solutions are proposed and
tested only for specific instances of the GMM.

In order to circumvent the aforementioned issues, in this
work, we do not explicitly assume (or attempt to fit) a GMM
to describe (approximate) the underlying distribution. Instead,
we rely upon stochastic approximation for obtaining solutions
of (3) via simple iterative methods based on available channel
realizations; i.e., we adopt a data-driven approach for design-
ing a beamformer that minimizes outage. More precisely, we
consider the following two settings.

First, consider a scenario where a collection of channel real-
izations HT := {ht}T

t=1 is made available at the BS via mea-
surement campaigns conducted over a certain time period before
deployment. In the absence of the distributional information of
h, we propose to use the set of sample realizations HT to ap-
proximate the cost function of (3). Towards this end, note that
we can equivalently express (3) as

min
w∈W

Pr

(
|wH h|2 < γ

)
⇔ min

w∈W
Eh [1{|wH h|2 <γ}] (5)

Define

f(w;h) := 1{|wH h|2 <γ} =

{
1, if |wH h|2 < γ

0, otherwise
(6)

as the indicator function of the event |wH h|2 < γ. Utilizing
HT , we construct the following sample average estimate of
Eh [f(w;h)]

F̂ (w;HT ) :=
1
T

T∑
t=1

{
f(w;ht) := 1{|wH h t |2 <γ}

}
(7)

Thus, given access to a window of channel realizations {ht}T
t=1

alone (but not the distribution), the interpretation is that we min-
imize the total number of outages over (“recent”) channel “his-
tory” - which is very reasonable when the channel can change
abruptly between different states.

It is worthwhile to point out that if the channel is constant,
then all channel samples will be the same, and minimizing the
term on the right hand side, e.g., under a sum power constraint,
will reduce to matched filtering to the fixed channel. If the
channel is changing slowly, then, keeping a short window of
samples in the stochastic approximation of the cost function on
the right hand side above, the solution will be naturally close
to the latest channel, but it will in fact take more than first and
second order channel statistics into account, which is a good
thing. If the channel does change more rapidly, we will obtain a
beamforming vector that minimizes the number of Quality-of-
Service (QoS) violations for the channel history considered. It is
up to the designer to decide what is the time window used (i.e.,
of the order of minutes, hours, or days) to collect and use channel
data. If that window is long, then indeed what one minimizes is
long-term outage, which is not appropriate for slowly varying
channels; but it is appropriate for rapidly varying ones, which
are hard to track instantaneously.

Under appropriate ergodic mixing conditions on the channel
process [44, p. 171], we have

lim
T →∞

F̂ (w;HT ) = Eh [f(w;h)] = F (w),∀ w ∈ W (8)

almost surely; i.e., sample averages converge to ensemble aver-
ages with probability (w.p.) 1. On replacing F (w) by F̂ (w;HT )
in (3), we obtain the problem

min
w∈W

F̂ (w;HT ) (9)

which corresponds to an empirical approximation of its ensem-
ble counterpart (5).

Remark 2: Stronger results pertaining to convergence of the
optimal value and optimal solutions of (9) to their counterparts
of (5) can be obtained under additional assumptions. Apply-
ing [45, Proposition 2.1], we have that the functions F (w) and
F̂ (w;HT ) are lower semicontinuous. Assuming that the chan-
nel realizations HT are independent, and, for every w ∈ W ,
we have |wH h|2 �= γ w.p. 1, then [45, Proposition 2.1] asserts
that F (w) is continuous and F̂ (w,HT ) converges to F (w) uni-
formly w.p. 1 onW . Under some additional technical conditions
listed in [46, Theorem 2.3], uniform convergence is sufficient
to guarantee that i) the optimal value, and ii) the set of optimal
solutions of (9) converge to their counterparts of (5) as T → ∞.

Note that the above scenario entails solving a batch problem
in an offline setting; i.e., the samples HT have to be collected
and stored at the BS before deployment in order to design w.
While such a setup alleviates the need for instantaneous CSIT, in
practice, in the post-deployment phase, assuming the user pro-
vides intermittent feedback to the BS regarding his/her estimate
of the downlink channel, it is desirable to develop approaches
which can exploit this information for computing a solution of
(3) in an online fashion. In this setting, we seek to minimize
F (w) by updating w as channel estimates arrive at the BS in
a streaming fashion. Note that our minimum outage criterion
can naturally cope with intermittent/delayed feedback from the
user due to our assumption that all channels are drawn from
the same underlying distribution, and hence, are statistically
equivalent. As a result, feedback requirements are consider-
ably relaxed compared to other setups reliant on instantaneous
CSIT. Furthermore, online algorithms are appealing for their
simplicity and low storage requirements since computing up-
dates only requires storing the most recent channel estimate;
i.e., updates are only based on f(w;ht), where t denotes the
streaming index. Consequently, such a setting is well suited for
large-scale antenna systems operating in FDD 5, where N is
potentially large and feedback delays are inevitable. We also
point out that it is not necessary to receive feedback from the
same user; feedback from different ‘peer’ users with the same
channel distribution as the user of interest can also be utilized
(due to statistical equivalence). This becomes useful in situ-
ations where channel estimates are stale (due to fast channel
variation relative to estimation and feedback delays to get the
estimate back to the transmitter), or intermittent, or unavailable

5This is indeed the case in most practical systems.
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from a particular user of interest–but may be available from
peer users.6

Before further elaborating upon our algorithmic approaches
for the outlined settings, we discuss the computational tractabil-
ity of (3). In [30], under the GMM assumption and using sum-
power constraints (SPCs), it was established that (3) is NP–Hard
in the worst-case when J > N . Although we resort to stochastic
approximation in this work, we point out that irrespective of the
distribution of h, the indicator function f(w;h) is always non-
convex and discontinuous, which poses a formidable challenge
to our approach. Indeed, the analysis of most stochastic opti-
mization algorithms are based on the assumption that f(w;h)
is continuous in w for every h. We partially address this prob-
lem by constructing smooth approximations of f(w;h), as we
explain in the following section. While one may question the
merit of using tools developed for continuous optimization for a
problem which is not continuous, we demonstrate that applying
these simple algorithms on smoothed surrogates of the indicator
function can perform surprisingly well.

C. Smooth Surrogates for the Indicator Function

First, since f(w;h) is a real function of complex variables,
we can equivalently express it in terms of real variables as

f(w̃; h̃) := 1{‖H̃T w̃‖2
2 <γ} (10)

where we have used the definitions w̃ := [�[w]T ,�[w]T ]T ∈
R2N , h̃ := [�[h]T ,�[h]T ]T ∈ R2N and

H̃ :=
[�[h] �[h]
�[h] −�[h]

]
∈ R2N ×2

We now consider the following smooth surrogates of f(w̃; h̃).
1) Sigmoid Approximation: Consider the function

u(w̃; h̃) :=
1

1 + exp (‖H̃T w̃‖2
2 − γ)

(11)

Note that when ‖H̃T w̃‖2
2 << γ, u(w̃; h̃) ≈ 1 and

when ‖H̃T w̃‖2
2 >> γ, u(w̃; h̃) ≈ 0. Hence, the function

u(w̃; h̃) serves as a continuous approximation of f(w̃; h̃).
Furthermore, u(w̃; h̃) is continuously differentiable with
gradient

∇w̃u(w̃; h̃) = −2 exp (‖H̃T w̃‖2
2 − γ)H̃iH̃T

i w̃[
1 + exp (‖H̃T w̃‖2

2 − γ)
]2 (12)

2) Smoothed Point-Wise Maximum Approximation: Consider
the point-wise maximum (PWM) function

v(w̃; h̃) := max

{
0, 1 − ‖H̃T w̃‖2

2

γ

}
(13)

Again, for ‖H̃T w̃‖2
2 << γ, v(w̃; h̃) ≈ 1 and when

‖H̃T w̃‖2
2 >> γ, v(w̃; h̃) = 0. While v(w̃; h̃) can serve as a

6This idea is very similar to the idea of collaborative filtering in recommender
systems [47], where the preferences of the user of interest is inferred from the
preferences of peer users.

continuous approximation of f(w̃; h̃), it is non-differentiable
in w̃ in contrast to (11). Hence, we propose to construct
a differentiable approximation of v(w̃; h̃) using Nesterov’s
smoothing approach [48]. Towards this end, note that v(w̃; h̃)
admits the following equivalent representation

v(w̃; h̃) = max
0≤y≤1

{
y

(
1 − ‖H̃T w̃‖2

2

γ

)}
(14)

This step allows us to construct a smooth surrogate of (13) by
applying the following modification to (14)

v(μ)(w̃; h̃) = max
0≤y≤1

{
y

(
1 − ‖H̃T w̃‖2

2

γ

)
− μ

2
y2

}
(15)

where μ > 0 is a smoothing parameter. Note that for a given
w̃, the maximization problem is strongly concave in y over the
unit interval, and thus admits a unique solution which can be
computed in closed form. Using the definition

g(w̃; h̃) := 1 − ‖H̃T w̃‖2
2

γ
(16)

allows us to ultimately represent v(μ)(w̃; h̃) in the following
form

v(μ)(w̃; h̃) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, g(w̃; h̃) < 0

1
2μ

(
g(w̃; h̃)

)2
, 0 ≤ g(w̃; h̃) ≤ μ

g(w̃; h̃) − μ

2
, g(w̃; h̃) > μ

(17)

Note that (17) is continuously differentiable in w̃ with deriva-
tives given by

∇w̃v(μ)(w̃; h̃) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, g(w̃; h̃) < 0

g(w̃; h̃)
μ

∇w̃g(w̃; h̃), 0 ≤ g(w̃; h̃) ≤ μ

∇w̃g(w̃; h̃), g(w̃; h̃) > μ
(18)

where

∇w̃g(w̃; h̃) := − 2
γ
H̃H̃T w̃ (19)

In addition, regarding the quality of approximation, it is possible
to establish the following bounds [48, p. 132]

v(μ)(w̃; h̃) ≤ v(w̃; h̃) ≤ v(μ)(w̃; h̃) +
μ

2
,∀ (w̃; h̃) ∈ W̃ × F̃

(20)
where W̃, F̃ denote the representation of the sets W,F in terms
of real variables, respectively. Note that (20) implies that our
approximation is tight up to an additive factor in μ. Thus, the
quality of approximation can be improved by reducing μ.

In general, it is hard to theoretically quantify the quality of
approximation obtained by using the sigmoid and smoothed-
PWM functions as surrogates for the indicator function. To
aid intuition regarding the strengths/weaknesses these choices
of surrogate functions offer, we provide an illustrative plot in
Fig. 1. Note that using the sigmoid function results in a overall
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Fig. 1. Illustrative plot of surrogates for the indicator function f (w) =
1{|w h |<√

γ } for w ∈ R, h ∼ N (1, 1), γ = 5, μ = 1e−3 .

better approximation compared to the smoothed-PWM function.
However, it is precisely because of this fact that makes the
sigmoid function comparatively harder to minimize using tools
from continuous optimization (as it more closely resembles a
non-smooth function).

D. Problem Formulation

Using the surrogates defined in the prior section, we propose
to employ the following smooth approximations of the original
SO formulation (5)

min
w̃∈W̃

{
U(w̃) := Eh̃ [u(w̃; h̃)]

}
(21a)

min
w̃∈W̃

{
V (μ)(w̃) := Eh̃ [v(μ)(w̃; h̃)]

}
(21b)

corresponding to the sigmoid and smoothed PWM approxima-
tions respectively. Note that both formulations are non-convex,
and hence in general, it is not possible to solve them optimally
in polynomial-time. Here, we are interested in computing high-
quality sub-optimal solutions using simple algorithms in both
offline and online settings.

1) Offline Setting: Given HT , we obtain the following finite-
sample approximations of (21a) and (21b)

min
w̃∈W̃

{
Û(w̃;HT ) :=

1
T

T∑
t=1

u(w̃; h̃t)
}

(22a)

min
w̃∈W̃

{
V̂ (μ)(w̃;HT ) :=

1
T

T∑
t=1

v(μ)(w̃; h̃t)
}

(22b)

Remark 2 applies here for (22a) and (22b) as well. Note
that these problems correspond to minimizing finite sums
of smooth functions. Consequently, they are well suited
for application of FOMs.

2) Online Setting: In this case, channel estimates {h̃t}∞t=0
arrive at the BS in a streaming fashion. While our goal is to
minimize U(w̃) and V (μ)(w̃), for each random vector h̃t ,
we only have access to the random cost functions u(w̃; h̃t)

and v(μ)(w̃; h̃t). We will utilize online FOMs to compute
efficient incremental updates of w̃ based on instantaneous
gradient estimates of the ensemble gradients ∇w̃U(w̃)
and ∇w̃V (μ)(w̃).

The exact algorithms we employ are outlined in the next
section.

III. FIRST-ORDER METHODS FOR MINIMUM OUTAGE

In this section, we provide a brief overview of the various
FOMs utilized for both offline and online settings.

A. Offline Setting

Note that (22a) and (22b) can be abstracted via the following
representative problem, where given a batch of d-dimensional
data samples {ξt}T

t=1 drawn from an unknown probability dis-
tribution with support set Ξ ⊂ Rd , we aim to minimize the
finite-sample surrogate

min
x∈X

{
F (x) :=

1
T

T∑
t=1

ft(x)
}

(23)

where we define ft(x) := f(x; ξt) for ease of notation. It
is assumed that X ⊂ Rd is a convex, compact set and each
ft : X × Ξ → R is a twice differentiable, non-convex function
∀ t ∈ [T ] with L− Lipschitz continuous gradients:

‖∇ft(x1) −∇ft(x2)‖2 ≤ L‖x1 − x2‖2 ,∀ x1 ,x2 ∈ X .
(24)

This implies that the function F (x) is also L− smooth, since
smoothness is preserved under convex combinations. A standard
method to determine an approximate solution for (23) is gradient
descent (GD), which can be described by the following update
rule

y(k+1) = x(k) − αk

T

T∑
t=1

∇ft(xk ) (25a)

x(k+1) = ΠX (y(k+1)),∀ k ∈ N (25b)

where ΠX (.) represents the Euclidean projection operator onto
X and αk > 0 is the step-size in the k-th iteration. Note that
at each step, GD requires evaluation of T gradients, which is
expensive for large T . A popular modification which reduces
complexity is stochastic gradient descent (SGD). In this algo-
rithm, at each iteration k, an index tk is drawn uniformly at
random from the index set [T ], resulting in the update

y(k+1) = x(k) − αk∇ftk
(xk ) (26a)

x(k+1) = ΠX (y(k+1)),∀ k ∈ N (26b)

Note that the expectation Etk
[y(k+1) |x(k) ] in (26a) is identical

to (25a), which implies that the updates of SGD are equal to that
of GD in expectation. As each iteration of SGD only requires
computing single derivative ∇ftk

(x(k)), this results in a O(T )-
factor improvement in per-iteration complexity compared to
GD.

Aiming to combine the best of both GD and SGD, a hybrid
algorithm termed stochastic variance reduced gradient (SVRG)
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Algorithm 1: SVRG.
Initialization: Initialize y1 ∈ X , set number of stages S,
update frequency K, and the step-size sequence
{α(k)

s }s∈[S ],k∈[K ]
Iterate: for s = 1, · · · , S
• Compute gs := ∇F (ys)
• Set x(1)

s = ys

• Iterate: for k = 1, · · · ,K Choose tk ∈ [T ] uniformly
at random and update
v(k+1)

s = x(k)
s − α

(k)
s [∇ftk

(x(k)
s ) −∇ftk

(ys) + gs ]
x(k+1)

s = ΠX (v(k+1)
s )

• End
• Set ys+1 = x(K +1)

s

End
Return: yS+1

has been recently proposed in [49], [50]. SVRG proceeds in
multiple stages, where at the start of each stage s, a “centering
variable” ys is defined from the output of the past stage. Then,
the full gradient ∇F (ys) is computed once, for the purpose of
performing modified SGD iterations inside an inner loop with
K iterations. In each such inner iteration k ∈ [K], we sample
an index tk uniformly at random from [T ] and perform the
following update

v(k+1)
s = x(k)

s − α(k)
s (∇ftk

(x(k)
s ) −∇ftk

(ys) + ∇F (ys))
(27a)

x(k+1)
s = ΠX (v(k+1)

s ),∀ k ∈ [K] (27b)

where the superscript k denotes the inner SGD iteration counter
for stage s and we set x(1)

s = ys . Again, the expectation
Etk

(v(k+1)
s |x(k)

s ) equals (25a). However, compared to the sam-

pled gradient ∇ftk
(x(k)

s ) used in SGD, SVRG uses a dif-

ferent unbiased gradient estimator ∇ftk
(x(k)

s ) −∇ftk
(ys) +

∇F (ys) with potentially smaller variance, provided the step-
size sequence and the stage length K are chosen appropriately
(to be specified later). The overall algorithm is summarized in
Algorithm 1.

B. Online Setting

In this case, our problem can be viewed as the task of mini-
mizing

min
x∈X

Eξ[f(x; ξ)] (28)

based on sequentially processing the stream of observed sam-
ples {ξt}∞t=0 . Given a sample ξt (here, t denotes the streaming
index), we define the instantaneous function ft(x) := f(x; ξt).
Using the instantaneous gradient ∇ft(x(t)) (which equals the
ensemble gradient in expectation), we perform online gradient
descent (OGD) updates of the same form as (26), except that tk
now denotes the streaming index t.

Meanwhile, an online variant of SVRG (termed as OVRG
here) was proposed in [51]. The algorithm is similar to SVRG,
except that we cannot compute the gradient Eξ[∇f(ys ; ξ)] of

Algorithm 2: OVRG.
Initialization: Initialize y1 ∈ X , set number of stages S,
batch sizes {ks}S

s=1 , update frequency K, and the step-size
sequence {α(t)

s }s∈[S ],t∈[K ]
Iterate: for s = 1, · · · , S
• Obtain samples (ξ1 , ξ2 , · · · , ξks

)
• Compute ĝs := 1

ks

∑
i∈[ks ] ∇fi(ys)

• Set x(1)
s = ys

• Iterate: for t = 1, · · · ,K and do Obtain sample ξt

and update
v(t+1)

s = x(t)
s − α

(t)
s (∇ft(x

(t)
s ) −∇ft(ys) + ĝs)

x(t+1)
s = ΠX (v(t+1)

s )
• End
• Set ys+1 = x(K +1)

s

End
Return: yS+1

the centering variable ys . To overcome this obstacle, at the be-
ginning of each stage s, we use ks samples to form the surrogate
gradient

ĝs :=
1
ks

∑
i∈[ks ]

∇fi(ys) (29)

which is then used to compute inner SGD iterations similar to
SVRG over a fixed loop of K iterations. Pseudocode for OVRG
is presented in Algorithm 2.
Note that if ks = ∞, then OVRG coincides with SVRG.

C. Discussion Regarding Convergence

In this section, we discuss the convergence of the aforemen-
tioned FOMs. Considering the offline scenario first, for prob-
lems of the form (23), an SGD algorithm with a randomized
stopping criterion was proposed in [52], which features conver-
gence to a stationary point of (23) (in expectation) using a con-
stant 1/2L step-size. However, a randomized stopping criterion
is not desirable in practical implementation. For SVRG, a non-
asymptotic convergence result is proved in [53]. In this case, the
result assumes perfect knowledge of the Lipschitz constant L
of F (x) in order to appropriately set the SVRG parameters (the
update frequency K and the step-size sequence). However, L
cannot be exactly determined in our case; we can only estimate
an upper bound on L. The sensitivity of the convergence results
to the use of such estimates to determine the SVRG parameters
is unknown7.

Meanwhile, for the online case, a modified variant of OGD
was presented in [54, Section 4] with almost-sure convergence
of the iterates to the set of stationary points of (28) using a dimin-
ishing step-size rule. Again, the result requires that the functions
f(x, ξ) are uniformly L-smooth for all (x, ξ) ∈ X × Ξ, and this
value of L is explicitly used in designing the step-size sequence.
Since our aim is to devise algorithms for cases when the channel

7The same argument applies for SGD as well, but is more pronounced in the
case of SVRG.
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distribution is unknown, it is clear that we cannot determine L a
priori 8. Finally, we are currently only aware of a convergence
analysis of OVRG for the case where the cost function of (28)
is strongly convex and L-smooth [51]. Extending this result to
the non-convex setting is an open problem.

In our implementation of these algorithms, we first tried us-
ing conservative estimates of the Lipschitz constants. However,
our experiments indicate that this does not translate to good
performance in practice, i.e., the progress made (in terms of
minimizing the outage probability) over a reasonable number of
iterations was very minimal. Hence, we opted for more aggres-
sive choices of step-sizes, which work well empirically. While
we cannot make any theoretical claims regarding convergence
for such step-sizes, the improvement in performance we observe
in practice is far too significant to overlook.

IV. MARKOV APPROXIMATION BASED METHODS

In this section, we discuss an alternative class of algorithms
for approximating (3) based on Markov’s inequality. The basic
idea underpinning this approach was proposed in [30], and is
reproduced here for completeness.

We begin by equivalently expressing (3) as

min
w∈W

Pr[|wH h|2 < γ] ⇐⇒ max
w∈W

Pr[|wH h|2 ≥ γ] (30)

Markov’s inequality states that Pr[x ≥ t] ≤ t−1E[x] for any
nonnegative random variable. It thus follows that

Pr[|wH h|2 ≥ γ] ≤ γ−1wH Rw,∀ w ∈ W (31)

where R := E[hhH ] is the channel covariance matrix. Hence,
the problem

max
w∈W

wH Rw (32)

corresponds to maximizing an upper bound on (30). While it
would be preferable to maximize a lower bound on the objective
of (30), determining such a suitable lower bound is non-trivial
(see [30] for details).

Unlike [30] which assumes that R is perfectly known, here
we are interested in cases where only (possibly stale) represen-
tative channel realizations are given. We therefore use stochastic
approximation to compute an empirical estimate in both offline
and online settings to serve as a baseline for comparison against
our FOMs.

A. Offline Setting

Using the sample set HT , we construct the empirical covari-
ance matrix

R̂T =
1
T

T∑
t=1

hthH
t (33)

using which we obtain the following surrogate of (32)

max
w∈W

wH R̂T w (34)

8Knowledge of the support set Ξ is required in this case.

When the set W corresponds to sum-power constraints (SPCs),
the problem admits a closed form solution given by the prin-
cipal eigen-vector of R̂T scaled by

√
P (the maximum power

budget). We term this method as MM-App (Modified Markov
approximation).

B. Online Setting

Here, we describe an incremental algorithm to compute so-
lutions of (32) subject to per-antenna constraints (PACs). For
the case of SPCs, we can employ the well known Oja’s algo-
rithm [55], [56], which features guaranteed convergence to the
principal eigenvector of R. On the other hand, with PACs, the
non-convexity of (32) makes it considerably more challenging to
compute high-quality solutions. We now describe our approach.

Given a channel sample ht , we have access to the random
function

qt(w̃) := qt(w̃; h̃t) = w̃T R̃tw̃ (35)

where R̃t := H̃tH̃T
t . Since qt(w̃) is a convex quadratic, note

that the linear surrogate function

qt(w̃, w̃′) := qt(w̃′) + ∇qt(w̃′)T (w̃ − w̃′) (36)

is a global lower bound for qt(w̃) for all w̃′ ∈ W̃ (with equality
at w̃ = w̃′). This implies that if we subtract a proximal term
from qt(w̃, w̃′), the resulting strongly concave function

q
(α)
t (w̃, w̃′) := qt(w̃′) + ∇qt(w̃′)T (w̃ − w̃′) − α

2
‖w̃ − w̃′‖2

2

(37)
is also a global lower bound for qt(w̃) for all w̃′ ∈ W̃ and
α > 0. Using the above defined quadratic surrogate function,
we propose to use the following algorithm, which we designate
as OM-App (Online Markov approximation)

ỹ(t+1) = arg max
w̃

q
(α)
t (w̃, w̃(t))

= w̃(t) +
1
α
∇qt(w̃(t)) (38a)

z̃(t+1) =
t

t + 1
z̃(t) +

1
t + 1

ỹ(t+1) (38b)

w̃(t+1) = ΠW̃(z̃(t+1)),∀ t ∈ N (38c)

Note that for t = 0, the above algorithm corresponds to OGD.
For subsequent iterations, a convex combination of the OGD
iterate (38a) and the auxiliary iterate z̃(t) is performed accord-
ing to (38b). It can be readily verified OM-App is a special
instance of the Stochastic Successive Upper-bound Minimiza-
tion (SSUM) algorithm proposed in [54, p. 536]. Consequently,
under the assumption that the channel samples h1 ,h2 , · · · cor-
respond to i.i.d. realizations of h, by virtue of [54, Theorem
1], the sequence of iterates {w̃(t)}∞t=0 generated by OM-App is
guaranteed to globally converge to the set of stationary points
of (32), almost surely.

V. SIMULATION RESULTS

In this section, we evaluate the outage probability perfor-
mance of the proposed methods in a point-to-point beamforming
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scenario. With the information of the historical channel realiza-
tions, we evaluate the performance of the stochastic approxi-
mation solutions, i.e., sigmoid and PWM. All experiments are
carried out on a Windows desktop with 4 Intel i7 cores and 8 GB
of RAM. It is assumed that the channel vector h is drawn from
a GMM with distribution p(h) given by

p(h) =
J∑

j=1

πjCN (h;mj , σ
2
j I). (39)

Here, CN ((·),m,R) denotes a multivariate Gaussian com-
plex distribution of mean vector m and covariance matrix
R. J is the number of kernels in the GMM and πj , j ∈ [J ]
are the corresponding mixture probabilities of each kernel
with πj ≥ 0,

∑J
j=1 πj = 1. The mean mj of each Gaussian

kernel is modeled as a Vandermonde steering vector mj =
[1, eiθj · · · , ei(N −1)θj ]T , where θj ∈ [0, 2π) denotes the angle
of the jth specular path. Unless stated othwerwise, we set the
number of kernels to J = 4, the angles {θj}J

j=1 of the specular
paths to {− 2

3 π, 1
6 π, 1

2 π, 3
4 π}, the variances to σ2

j = 1, and the
mixture probabilities to πj = 1

J ,∀ j ∈ [J ] throughout our exper-
iments. Note that given enough kernels J , the GMM can approx-
imately fit any distribution in practice. We test the performance
of the proposed sigmoid SGD, sigmoid SVRG, PWM SGD and
PWM SVRG with the number of historical channel samples
T = 500 and the outage threshold γ = 4. For PWM SGD and
PWM SVRG, the smoothing parameter is set to μ = 10−3 . Re-
garding step sizes, a diminishing step-size rule αk = c/k is used
in the SGD based methods. Herein, c = 3 and k represents the
number of iterations. For sigmoid SVRG and PWM SVRG, the
update frequency is set to K = 2T and the step size is fixed at
α = 0.01. Since the SGD and SVRG based methods require a
different number of gradient evaluations per iteration, for fair
comparison, we set a fixed number of total gradient evaluations
for each method and evaluate the outage probability after every
T gradient evaluations. The number of gradient evaluations is
set to 104 here. Note that this implies that the number of iter-
ations for each method is different, depending on the number
of gradients evaluated per iteration. In all examples, the outage
probability results are averaged over 250 Monte Carlo simula-
tions; i.e., over 250 different collections of channel realizations.

In our first set of experiments, we consider a traditional beam-
forming scenario where the number of antennas is set to 16.
Since the number of antennas is relatively small, it is reasonable
to use the SPCs and here the total transmitted power is set to
P = 4.

In Fig. 2, we plot both the evolution of the outage cost function
and the sample averaged surrogate functions (22a) and (22b) as
a function of the number of gradients utilized by the stochas-
tic gradient methods (a single unit on the x-axis represents T
gradients processed). As expected, the smoothed PWM func-
tion, while being relatively easier to minimize compared to the
sigmoid function, overall yields a worse approximation to the
outage function. It is evident that all methods are successful in
converging to a small outage probability. Initially, sigmoid SGD
and PWM SGD converge faster than their SVRG counterparts.
However, the sigmoid SGD and PWM SGD eventually attain

Fig. 2. Outage Probability as a function of iterations with ‖mj ‖2
2 = N = 16,

σ2
j = 1, and πj = 1

J , ∀ j ∈ [J ].

Fig. 3. Outage Probability as a function of magnitude with σ2
j = 1, πj = 1

J ,

∀ j ∈ [J ], and ‖mj ‖2
2 = N = 16, j = 2, · · · , J .

somewhat higher outage probabilities compared to the sigmoid
SVRG and PWM SVRG, respectively, which are slower to con-
verge in this experiment.

In Fig. 3, we examine the outage probabilities for the case
that ‖m1‖2 is varied from [0.1, 9.6], while the means of the
other kernels are fixed. It is observed that MM-App fails to
work efficiently especially when there is near-far imbalance.
The outage probabilities of the proposed sigmoid and PWM
based methods decrease quickly as the magnitude of ‖m1‖2
increases from 0.1 to 5.1 and then decreases slightly later on.
From Fig. 3, we can see that sigmoid SVRG and PWM SVRG
yield smaller outage probabilities compared to the sigmoid SGD
and PWM SGD schemes, respectively.

Fig. 4 shows the outage probabilities as a function of the
mixture probability of the first kernel. It is observed that the
sigmoid SGD and sigmoid SVRG arrive at the same steady-
state while the PWM SGD and PWM SVRG have the same
steady-state behavior. However, the sigmoid based approaches
can yield smaller outage probabilities especially when π1 is
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Fig. 4. Outage Probability as a function of the mixture probability
with ‖mj ‖2

2 = N = 16, πj = 1
J , ∀ j ∈ [J ], and σ2

j = 1, j = 2, · · · , J .

Fig. 5. Outage Probability as a function of the variance with ‖mj ‖2
2 = N =

16, σ2
j = 1, ∀ j ∈ [J ], and πj = 1

J , j = 2, · · · , J .

less than 0.8. Furthermore, we can see that the MM-App
yields the largest outage probability among all the methods.
As π1 approaches 1, all algorithms achieve their best perfor-
mances and provide almost the same outage probabilities. That’s
due to the fact that only the first kernel plays a major role
when π1 ≈ 1 and the GMM is similar to Gaussian distribution
model.

The outage probabilities of the MM-App, sigmoid SGD, sig-
moid SVRG, PWM SGD and PWM SVRG for different values
of σ2

1 are depicted in Fig. 5. Compared to MM-App, the FOMs
can provide much smaller outage probabilities especially when
σ2

1 is less than 1. In terms of approximation, the sigmoid solution
is superior to the PWM scheme. In particular, the sigmoid SGD
has a slight performance improvement compared to PWM SGD
while the sigmoid SVRG yields a smaller outage probability
than the PWM SVRG. Moreover, we can see that the sigmoid
SGD and PWM SGD are slightly inferior to sigmoid SVRG and
PWM SVRG, respectively.

In Fig. 6, we examine the performance of the methods as
the size of the channel sample set is increased T = 10 to 510.

Fig. 6. Outage Probability as a function of the number of channel samples
with ‖mj ‖2

2 = N = 16, σ2
j = 1, and πj = 1

J , ∀ j ∈ [J ].

In this case, the total number of gradient evaluations is fixed
to 100T for each value of T (equivalent to 100 total passes
through the sample set). It is observed that the OGD and OVRG
methods significantly outperform MM-App overall. The outage
probabilities of the FOMs gradually decrease as the size of
the sample set increases, with very satisfactory performance
attained with only 100 samples. Furthermore, we can see that
the sigmoid based methods yield smaller outage probabilities
than the PWM based schemes.

We now move onto our second set of experiments, where we
test our proposed streaming algorithms in large-scale antenna
systems, with SPCs replaced by PACs. Unless stated otherwise,
the threshold γ is set to 4 and the parameter settings of the
GMM are ‖mj‖2

2 = N , σ2
j = 1, πj = 1

J , ∀j ∈ [J ]. We allocate
a maximum per-antenna power budget of Pn = 0.25,∀n ∈ [N ].
All results are averaged over 250 Monte Carlo realizations. We
first consider a scenario with N = 100 antennas, where we ap-
ply OGD and OVRG. Four stochastic algorithms, i.e., sigmoid
OGD, PWM OGD, sigmoid OVRG and PWM OVRG, together
with OM-App, are tested. All the methods are initialized from
the same random vector satisfying the PACs. Again, for fair
comparison, we use a maximum budget of 32960 gradient eval-
uations for each algorithm. Since the OGD and OVRG based
methods require different number of gradient evaluations per it-
eration, the number of iterations executed for a fixed number of
channel realizations is different. For OM-App, we set α = 10−3 ,
while for sigmoid OGD and PWM OGD, we use a diminishing
step size 1√

t
. For sigmoid OVRG and PWM OVRG, we use a

constant step size 0.0225. For the OVRG based methods, we set
the batch sizes {ks}S

s=1 as k1 = 80,

ks =

{
2ks−1 , ks < 640

640, otherwise
(40)

with s = 2, · · · , S and the inner loop sample size K = 1000.
The smoothing parameter for the PWM based methods is set to
μ = 10−3 .

We plot the outage probability results in every Ks = 200
gradients in Fig. 7. We can see that OM-App fails to work
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Fig. 7. Outage Probability as a function of iterations with ‖mj ‖2
2 =

N = 100, σ2
j = 1, and πj = 1

J , ∀j ∈ [J ].

Fig. 8. Outage Probability as a function of magnitude with σ2
j = 1, πj = 1

J ,

∀j ∈ [J ], and ‖mj ‖2
2 = N = 100, j = 2, · · · , J .

effectively. It is also observed that sigmoid OGD and PWM
OGD methods initially converge faster than their OVRG based
counterparts. However, we can see that sigmoid OVRG and
PWM OVRG yield smaller outage probabilities compared to
sigmoid OGD and PWM OGD, respectively.

Fig. 8 depicts the outage probability results for the case where
we vary ‖m1‖2 while the mean vectors of the other kernels
is fixed to N = 100. It is observed that the performances of
sigmoid OGD, sigmoid OVRG, PWM OGD and PWM OVRG
are superior to that of OM-App. For sigmoid OGD, the outage
probability declines rapidly from 0.03 to 0.004 when ‖m1‖2
increases from 1 to 10, and keeps at around 0.0035 later on.
The PWM OGD has approximately the same performance as
sigmoid OGD. Furthermore, we can see that the OVRG based
methods can provide smaller outage probabilities especially for
‖m1‖2 ≥ 10. Also, PWM OVRG is slightly inferior to sigmoid
OVRG especially when ‖m1‖2 ≥ 15.

The outage probability results as a function of π1 are de-
picted in Fig. 9. It is observed that sigmoid OGD, sigmoid
OVRG, PWM OGD and PWM OVRG significantly outperform
the OM-App over the whole range. For OM-App, the value of
π1 has little influence on the outage probability performance.

Fig. 9. Outage Probability as a function of the mixture probability. With
‖mj ‖2

2 = N = 100, σ2
j = 1, ∀j ∈ [J ], and πj = 1

J , j = 2, · · · , J .

Fig. 10. Outage Probability as a function of the variance with ‖mj ‖2
2 = N =

100, πj = 1
J , ∀j ∈ [J ], and σ2

j = 1, j = 2, · · · , J .

The outage probabilities of the OVRG based methods decrease
as π1 increases from 0.1 to 0.9 while the OGD based schemes
yield approximately the same outage probabilities in the whole
range. Furthermore, the sigmoid OVRG and PWM OVRG can
obtain smaller outage probabilities than their OGD based coun-
terparts. Between the OVRG based methods, PWM OVRG is
slightly inferior to sigmoid OVRG when π1 ≤ 0.6 while it can
provide the smallest outage probability for the case of π1 > 0.7.

The outage probability results as a function of the variance
of the first kernel are depicted in Fig. 10. It is observed that
the OGD and OVRG based methods can provide much smaller
outage probabilities than OM-App. Furthermore, we can see
that the sigmoid OVRG and PWM OVRG are slightly superior
than the sigmoid OGD and PWM OGD, respectively.

The outage probability results as a function of the square root
of the threshold γ are depicted in Fig. 11. As expected, the outage
probabilities of all methods increase with the increase of γ1/2 .
We point out that OM-App has the largest outage probability
amongst all the methods. As for the PWM based methods, it
is observed that PWM OGD is always slightly inferior to the
PWM OVRG. However, for the sigmoid approximation based
methods, sigmoid OGD can provide larger outage probability
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Fig. 11. Outage Probability as a function of the threshold γ with ‖mj ‖2
2 =

N = 100, σ2
j = 1, and πj = 1

J , ∀j ∈ [J ].

Fig. 12. Outage Probability as a function of the number of antennas with
‖mj ‖2

2 = N , σ2
j = 1, and πj = 1

J , ∀j ∈ [J ].

than the sigmoid OVRG for the case of γ1/2 ≤ 3 while the
former slightly outperforms the latter when γ1/2 is larger than
3. Furthermore, we can see that the PWM OGD and PWM
OVRG yield large performance improvements compared with
the sigmoid based schemes when γ1/2 is larger than 9.

In Fig. 12, we plot the outage probability results as the number
of antennas N is increased from N = 50 to 210. It is observed
that the OM-App solution yields the largest outage probability
in the whole range. As for the FOMs, the OVRG based methods
are slightly inferior to the OGD based schemes when N is less
than 90 while they can provide smaller outage probabilities
for the case of N ≥ 90. Furthermore, we can see that sigmoid
OVRG yields approximately the same outage probability as
PWM OVRG, while sigmoid OGD has the same performance
as PWM OGD.

VI. CONCLUSION

In this paper, we proposed a novel framework for minimum
outage transmit beamforming. The new framework differs from
earlier outage-based beamforming approaches which assume
knowledge of the channel distribution. Instead, our approach
relies on stale, intermittent, historical, or even peer feedback of
channel vectors drawn from the target distribution. Our for-
mulation fits two basic wireless communication modalities:

point-to-point transmit beamforming, and single-group multi-
cast beamforming. Our designs are based on minimizing outage
probability under sum or per-antenna power constraints.

Considering that we have no prior knowledge of the channel
distribution, the outage probability criterion is first expressed
as the expectation of the indicator function of the outage set.
In this form, the criterion is amenable to sample average ap-
proximation, using a sum of indicator functions. Since the in-
dicator function is non-convex and discontinuous, two different
smooth approximations (sigmoid and pairwise maximum) are
employed as smooth optimization surrogates. Two application
scenarios are considered: batch and streaming optimization, ap-
plicable when one has access to stored historical data, or only a
single channel instance at a time, respectively. In the batch set-
ting, four different algorithms (sigmoid SGD, sigmoid SVRG,
PWM SGD and PWM SVRG) are proposed for optimization
under sum power constraints. In the streaming setting, four
algorithms (sigmoid OGD, sigmoid OVRG, PWM OGD and
PWM OVRG) are proposed for online optimization under per-
antenna power constraints. Given the unfavorable attributes of
the indicator function (non-convexity and discontinuity), it is
hard to theoretically assess the performance of the proposed
stochastic optimization algorithms. Yet, judiciously designed
experiments indicate that they are remarkably effective for this
non-convex and NP–hard class of problems. Considering also
their implementation simplicity, the proposed algorithms appear
to be serious candidates for practical implementation. After all,
it is hard to argue against something simple that works.

Finally, extending our outage based approach to more general
downlink multi-user MISO and MIMO beamforming scenarios
is also of interest. However, the problem formulation in these
settings is far more complicated than the one considered here,
which makes it difficult to develop a straightforward extension
of the algorithms presented here. Developing a new algorith-
mic approach to tackle these problems is deferred for follow-up
work. Another line of future work could be to extend our ap-
proach for designing transmission schemes with higher-rank
covariance matrices.

APPENDIX A
OUTAGE MINIMIZATION WITH GAUSSIAN MODELS

Consider the outage minimization problem (3) subject to sum-
power constraints where the channel distribution follows the
model h ∼ CN (m,C). This corresponds to a special case of the
GMM with only a single kernel. It has already been established
in [30, Claim 2] that this problem can be reduced to a 1-D line
search. We summarize and expand upon this result here, as it
applies in our context.

In this case, the distribution of the received signal is given by
y ∼ CN (wH m,wH Cw), which allows us to explicitly express
the cost function of (3) as

F (w) =
∫ ∫

Aγ

CN (wH m,wH Cw) (41)

where Aγ denotes the disc of radius γ in the complex plane.
Let p ∈ CN denote the unit-norm principal component of (I −
mmH

‖m‖2
2
)C(I − mmH

‖m‖2
2
). According to the result of [30, Appendix
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B], the optimal beamforming vector w which minimizes F (w)
over the norm ball ‖w‖2

2 ≤ P lies in the subspace spanned by
m and p, and can be computed by solving the following one-
dimensional line search problem

min
0≤c≤P ‖m‖2

2

F

(√
c

m
‖m‖2

2
+
√

P − c

‖m‖2
2
p
)

(42)

Hence, provided that the first and second-order channel statistics
can be reliably estimated at the BS prior to downlink transmis-
sion, the outage problem can be solved optimally. Otherwise, if
the mean (i.e., the “nominal channel direction”) is known, but
not C, then we can compute p in an online fashion from a stream
of instantaneous estimates (I − mmH

‖m‖2
2
)(hthH

t − mmH )(I −
mmH

‖m‖2
2
) using Oja’s algorithm. The streaming estimate p̂t of

p can then be used in (42) for obtaining an online solution for
the problem. Furthermore, if the channel distribution can be bet-
ter described by a GMM which happens to change states slowly
and the BS can accurately track m and C, then we can opt to
minimize outage on a per-state basis, which again reduces to
solving a problem of the form (42) for each state.
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