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Abstract—Estimating the power spectrum of a wide-sense sta-
tionary random process is an important component of several
signal processing tasks. Distributed spectrum sensing problems
naturally emerge in cases where measurements of different real-
izations of a random process are collected at multiple spatial loca-
tions. This paper proposes a distributed power spectrum sensing
framework for autoregressive (AR) and autoregressive moving-
average (ARMA) processes. The sensing model comprises a net-
work of scattered sensors which transmit randomly filtered, sam-
ple averaged, one bit quantized power measurements to a fusion
center. First, assuming that sample averaging at each sensor is suf-
ficient to converge to the ensemble average, it is shown that AR and
ARMA power spectrum estimation from the received bits can be
cast as (non-convex) optimization problems with special structure.
Next, the sample averaging requirement is relaxed and maximum
likelihood formulations are proposed, which take into account er-
rors caused by quantization of inaccurate soft power measure-
ments. Leveraging the block separable structure present in these
formulations, we propose Block Coordinate Descent algorithms
for obtaining approximate solutions, with favorable convergence
properties. Simulation results demonstrate the efficacy of the pro-
posed approaches for reconstructing power spectra from relatively
few bits, when the model parametrization is valid.

Index Terms—Distributed spectrum sensing, parametric spec-
tral analysis, auto-regressive moving-average processes, quantiza-
tion, block coordinate descent.

I. INTRODUCTION

IN several modern signal processing applications (e.g., cog-
nitive radio sensing, and radio astronomy), it is desirable

to perform power spectrum (PS) estimation from compressed
measurements drawn from the underlying wide-sense station-
ary (WSS) random process. Non-parametric methods for PS
estimation from compressed analog measurements were devel-
oped in [2], [3]. These results were extended to the distributed
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sensing setting in [4] where a non-parametric approach was
adopted to reconstruct power spectra from one-bit compressed
measurements. A Maximum-Likelihood (ML) based approach
which takes into account errors introduced by quantizing noisy
power measurements was also developed in [5]. These methods
are well suited for cases when there is little prior knowledge
about the structure of the underlying WSS process. However, if
it is known a priori that the process admits a parametric repre-
sentation, then this information can and should be exploited for
developing parametric PS estimation methods with improved es-
timation performance—see [6]–[8] for a moving average (MA)
parametrization in the context of [4], [5]. In this manuscript,
we consider autoregressive (AR) and autoregressive-moving-
average (ARMA) parametrizations for the underlying WSS
process instead.

AR and ARMA power spectrum estimation from analog
measurements is a classical problem in signal processing with
many applications in geophysics, radar, sonar, radio astronomy,
oceanography and speech processing (see [9] and references
therein). Traditional AR PS estimation is a two-step process,
where a non-parametric estimate of the autocorrelation is used
to construct a system of linear equations that determine the AR
model parameters. Prevailing methods for ARMA PS estimation
also adopt a similar approach, which involves first obtaining an
estimate of the autocorrelation sequence, followed by solving
a linear system of equations to determine the AR parameters,
which are in turn used to solve for the MA parameters. An
overview of existing PS estimation methods can be found in [10].

Contributions: In contrast to the classical approaches, we
consider the problem of AR and ARMA PS estimation in a
distributed sensing scenario, where we employ a network of
(possibly very cheap) sensors, each of which draws samples
from the underlying WSS process, filters them using a random
broadband filter, averages the power at the filter’s output and
then compresses the result to one bit. The single bit power mea-
surements are then transmitted to a fusion center (FC), which
aims to reconstruct the ambient PS. To the best of our knowl-
edge, this is the first time that the problem of AR and ARMA PS
estimation from a small number of one-bit power measurements
has been considered.

First, we consider the case when sample averaging at each
sensor is sufficient to enable accurate power estimation. Ex-
ploiting the underlying parametric structure and other pertinent
properties of autocorrelation sequences, it is shown that prob-
lems of AR and ARMA PS estimation can be formulated as
non-convex optimization programs, which appear hard to solve
to global optimality in polynomial-time. Instead, the condition-
ally decomposable structure of the problem formulations are
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utilized to develop Block Coordinate Descent (BCD) algorithms
for obtaining high quality sub-optimal solutions, featuring good
convergence properties. Next, we relax the sample averaging
requirement at each sensor and reformulate the problems of AR
and ARMA PS estimation from possibly erroneous bit mea-
surements obtained by quantizing noisy soft power estimates. It
has been shown in [5] that the errors due to insufficient sample
averaging can be well approximated by a Gaussian distribu-
tion, which is utilized to develop ML formulations for both AR
and ARMA cases. Although the ML formulations also turn out
to be non-convex, they still possess block separable structure,
which is exploited to develop BCD algorithms for obtaining ap-
proximate solutions, again with good convergence properties. A
comprehensive comparison of the proposed algorithms is car-
ried out under different scenarios and various aspects of their
performance are evaluated.

Relative to [1], this journal version adds the ARMA formu-
lation and associated algorithms, along with the ML formula-
tions for both AR and ARMA models and the corresponding
algorithms.

The rest of the paper is organized as follows. We begin
with some preliminaries in Section II, followed by a descrip-
tion of our system model in Section III. Problem formulations
are presented in Section IV, while Section V contains the pro-
posed algorithms. Simulation results are provided in Section VI,
which offer insight on the selection of certain design parameters.
Conclusion are drawn in Section VII.

We adopt the following notations throughout the article. The
superscript ∗ is used to denote conjugation, whereas inline ∗ de-
notes convolution, as is customary. The superscript H is used to
denote the Hermitian (conjugate) transpose of a vector/matrix,
while T denotes plain transposition. Capital boldface is reserved
for matrices, while vectors are denoted by small boldface. Scalar
terms are represented in the normal face. The circularly sym-
metric complex Gaussian distribution is denoted by CN (·, ·),
whereas the n × n Identity matrix is represented by In .

II. PRELIMINARIES

Consider a discrete-time WSS signal x (n) and let rx (l) =
E [x (n) x∗ (n − l)] denote its autocorrelation sequence, where
rx (l) = r∗x (−l) ,∀ l ∈ Z+ , and Z+ is the set of all non-
negative integers. In this article, we assume that x (n) can be
accurately described by one of the following families of para-
metric models.

A. AR Models

Assuming that x (n) admits a AR representation of a cer-
tain order, we can characterize it as being generated by passing
complex, circularly symmetric, uncorrelated, zero mean white
Gaussian noise (WGN) of unit variance through a causal, lin-
ear shift invariant infinite impulse response (IIR) filter, whose
rational transfer function G (z) is given by

G (z) =
1

Ap (z)
=

1
1 +

∑p
k=1 α (k) z−k

(1)

where p is the order of the AR process and α =
[α (1) , . . . , α (p)]T ∈ Cp are the AR parameters. Hence, x (n)
can be expressed as

x (n) +
p∑

k=1

α (k) x (n − k) = v (n) (2)

where v (n) ∼ CN (0, 1). Assuming that the filter is stable (⇔
Ap (z) is a minimum-phase polynomial, i.e., its roots lie strictly
inside the unit circle), the output x (n) will be WSS. Thus,
multiplying both sides of the above equation by x∗ (n − l) and
taking expectation, one obtains the following recursive relation
for the autocorrelation sequence

rx (l) +
p∑

k=1

α (k) rx (l − k) = δ (l) , ∀ l ∈ Z+ (3)

which are the Yule-Walker equations for an AR process. Given
the parameters α, the power spectrum of the AR process
Sx

(
ejω
)

can be computed as follows

Sx

(
ejω
)

=
1

|Ap (ejω )|2
=

1

|1 +
∑p

k=1 α (k) e−jωk |2
(4)

B. ARMA Models

An ARMA(p, q) model is characterized by a causal, linear
shift invariant filter with a rational transfer function of the form

H (z) =
Bq (z)
Ap (z)

=
∑q

k=0 β (k) z−k

1 +
∑p

k=1 α (k) z−k
(5)

where p is the order of the AR process, q is the order of the MA
process, β = [β (0) , β (1) , . . . , β (q)]T ∈ Cq+1 are the MA pa-
rameters and α = [α (1) , . . . , α (p)]T ∈ Cp are the AR param-
eters. If the polynomial Ap (z) is minimum-phase, then passing
complex, circularly symmetric, uncorrelated, zero mean WGN
of unit variance through H (z) generates a WSS random process
x (n) at the output, which can be expressed as

x (n) +
p∑

k=1

α (k) x (n − k) =
q∑

k=0

β (k) v (n − k) (6)

where v (n) ∼ CN (0, 1). Multiplying both sides of the above
equation by x∗ (n − l) and taking expectation, the following
recursive relation is obtained

rx (l) +
p∑

k=1

α (k) rx (l − k) =

{
c (l) : 0 ≤ l ≤ q

0 : l > q
(7)

where c (l) = β (l) ∗ h∗ (−l) =
∑q

k=0 β (k) h∗ (k − l) and
h (l) is the impulse response of the filter H (z). Equation (7)
represents the Yule-Walker Equations for an ARMA process.
Given the parameters β and α, the PS of the ARMA process
can be computed as

Sx

(
ejω
)

=

∣
∣Bq

(
ejω
)∣
∣2

|Ap (ejω )|2
=

∣
∣∑q

k=0 β (k) e−jωk
∣
∣2

|1 +
∑p

k=1 α (k) e−jωk |2
(8)

Alternatively, the PS can also be evaluated without explicit
knowledge of the MA parameters β. This approach is outlined in
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Fig. 1. Frugal Sensing System Model.

[11, p. 191] and is briefly reviewed here for completeness. Since
h (n) is assumed to be causal, it follows that c (l) = 0,∀ l > q.
Hence, knowledge of c (l) for 0 ≤ l ≤ q implies that c (l) is
known ∀ l ∈ Z+ . Denote the z-transforms of the causal and
anti-causal parts of c (l) as

[C (z)]+ =
∞∑

l=0

c (l) z−l , [C (z)]− =
−1∑

l=−∞
c (l) zl (9)

From the definition of c (l), we have that

C (z)= Bq (z) H∗ (1/z∗) = Bq (z)
B∗

q (1/z∗)
A∗

p (1/z∗)
(10a)

=⇒ Bq (z) B∗
q (1/z∗) = C (z)A∗

p (1/z∗) (10b)

= [C (z)]+A∗
p (1/z∗) + [C (z)]−A∗

p (1/z∗) (10c)

Since Ap (z) is a causal polynomial by assumption, it
holds that A∗

p (1/z∗) is anti-causal. Thus the causal part of
Bq (z) B∗

q (1/z∗) is given by
[
Bq (z)B∗

q (1/z∗)
]
+= [C (z)]+A∗

p (1/z∗) (11a)

=⇒ |Bq

(
ejω
)
|2+=

[
C
(
ejω
)]

+A∗
p

(
ejω
)

(11b)

The full MA spectrum can then be evaluated from the
causal part

∣
∣Bq

(
ejω
)∣
∣2
+ since the sequence corresponding to

Bq (z) B∗
q (1/z∗) is conjugate symmetric. Hence, even without

explicitly knowing the MA parameters1, the MA part of the PS
can be evaluated from knowledge of the causal part of c (l) and
the AR parameters α. We will adopt this method for estimating
the ARMA PS.

III. SYSTEM MODEL

A network sensing scenario as described in [4] is con-
sidered (see Fig. 1), where a network of M distributed,
low-end sensors transmit randomly filtered, single bit power
measurements to a fusion center (FC). Sensor m ac-
quires samples of x (n) in the form of the data sample
vector xm = [xm (n) , xm (n − 1) , . . . , xm (n − K + 1)]T ∈

1If one desires, an estimate of the MA parameters β can be obtained by

performing a spectral factorization step [12] on
∣
∣Bq

(
ejω
)∣
∣2 . However, since

the factorization step is non-unique, it may not prove useful with regards to
parameter identifiability, unless it is known apriori that Bq (z) is a minimum
phase polynomial.

CK , where xm can be drawn from a common sample path (e.g.,
xm (n) = x (n − �m ), which models possibly different acquisi-
tion times), or from another realization of the same WSS second-
order ergodic process. Each sensor is also equipped with a finite
impulse response (FIR) filter possessing a pseudo-random im-
pulse response gm ∈ CK , with each entry being drawn from
the following uniform distribution defined on a set of 4 complex
symbols

gm (n) =

{
∼ U (±1 ± j) : n ∈ [0,K − 1]
0 : otherwise

(12)

where U (S) denotes the uniform probability mass function
defined over the finite set S. Using gm , each sensor ob-
tains random linear projections of the sampled data vectors
of the form zm = gH

m xm . Denote the average power of the
random linear projections obtained at sensor m by ρm =
E
[
|zm |2

]
= E

[∣
∣gH

m xm

∣
∣2
]

= gH
m Rxgm , where Rx ∈ CK×K

is the Toeplitz-Hermitian autocorrelation matrix of xm , whose
first row is [rx (0) , rx (1) , . . . , rx (K − 1)]. Each sensor per-
forms a sample averaging operation over N samples to obtain
soft estimates of ρm of the form

ρ(N )
m =

1
N

N∑

n=1

|zm (n)|2 (13)

Finally, each power estimate ρ
(N )
m is compared to a single, sensor

specific threshold tm . If ρ
(N )
m ≥ tm , the sensor transmits a bit

bm = 1 to the FC, otherwise, it sends bm = −1. Thus, each
transmitted power measurement bit can be expressed as

bm = sign
(
ρ(N )

m − tm

)
(14)

where sign (u) = 1 if u ≥ 0 and −1 otherwise ∀u ∈ R. As-
suming certain ergodic mixing conditions hold [13, p. 171], we
have that limN →∞ρ

(N )
m = ρm , i.e., sample averages converge to

ensemble averages, which in turn corresponds to

bm = sign
(
gH

m Rxgm − tm
)

(15)

Hence, on receipt of a bit bm = 1 (or bm = −1) from sen-
sor m, the FC infers that the inequality gH

m Rxgm ≥ tm (or
gH

m Rxgm < tm ) is satisfied.
The assumption that sample averaging at each sensor is suffi-

cient to allow accurate estimation of ρm can be relaxed and the
estimation errors introduced in the power measurements prior
to thresholding due to insufficient sample averaging can be ex-
plicitly modeled. Define em := ρ

(N )
m − ρm as the error due to

insufficient sample averaging at sensor m. By virtue of the cen-
tral limit theorem, these errors can be approximated as being
independent, zero-mean Gaussian random variables with vari-
ances

{
σ2

m

}M

m=1 [5]. Thus, after taking the errors into account,
each measurement bit can be expressed as

bm = sign
(
gH

m Rxgm + em − tm
)

(16)

In both cases, the goal of the FC is to estimate the ambient PS
from the binary power measurements {bm}M

m=1 .
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IV. PROBLEM FORMULATION

The bit-measurement model in (14) assumes sufficient sample
averaging at each sensor, whereas (15) allows for insufficient
sample averaging. We will consider both cases in the sequel.
In each case, we seek to cast power spectrum estimation from
binary power measurements as an optimization problem that
incorporates all pertinent prior information in order to reduce
the under-determinacy of our estimation setup (cf. the binary
measurements).

First, note that since Rx is Toeplitz-Hermitian, it can be ex-
pressed as Rx =

∑K−1
k=−(K−1) rx (k)ΘK

k , where ΘK
k ∈ RK×K

is a elementary Toeplitz matrix with ones on the kth diago-
nal and zeros elsewhere (by our notation, k = 0 corresponds
to the main diagonal, k > 0 correspond to the super-diagonals
and k < 0 are the sub-diagonals). Exploiting this structure, the
average power ρm = gH

m Rxgm can be expressed as

gH
m Rxgm = gH

m

⎛

⎝
K−1∑

k=−(K−1)

rx (k)ΘK
k

⎞

⎠gm (17a)

=
K−1∑

k=−(K−1)

gH
m ΘK

k gm
︸ ︷︷ ︸

cm (k)

rx (k) (17b)

= cm (0) rx (0)+
K−1∑

k=1

2Re {cm (k) rx (k)}(17c)

= qT
m rx (17d)

where cm (k) represents the kth lag of the deterministic
autocorrelation sequence of the mth broadband filter with
impulse response gm , and in the last step we have used
the fact that Re {cm (k) rx (k)} = Re {cm (k)}Re {rx (k)} +
Im {cm (k)} Im {rx (k)} to define the vectors

qm := [cm (0), 2Re{cm (1)}, . . . , 2Re{cm (K − 1)},

2Im{cm (1)}, . . . , 2Im{cm (K − 1)}]T ∈ R2K−1

rx := [rx(0), 2Re{rx(1)}, . . . , 2Re{rx(K − 1)},

2Im{rx(1)}, . . . , 2Im{rx(K − 1)}]T ∈ R2K−1

(18)

An initial feasible region for rx can be constructed from
the structural properties of autocorrelation sequences. From
the Cauchy-Schwarz inequality, we have |rx (k) | ≤ rx (0) for
k = 1, . . . ,K − 1. Thus, if an upper bound Pmax on the to-
tal signal power is known apriori, these inequalities define the
initial feasible set rx ∈ P , where P is the bounded polyhedron

P:= {rx ∈ R2K−1 |0 ≤ rx(0) ≤ Pmax ,

−rx(0) ≤ Re{rx(k)} ≤ rx(0),

− rx(0) ≤ Im{rx(k)} ≤ rx(0), k = 1, . . . ,K − 1}
(19)

Additionally, we exploit the fact that the autocorrelation ma-
trix Rx associated with any autocorrelation vector rx of any

order must be positive semi-definite, which also ensures the
non-negativity of the PS ∀ω ∈ [0, 2π]. However, since we em-
ploy a finite parametrization of the autocorrelation sequence,
the windowed PS estimate that is obtained by taking the
discrete-time Fourier Transform (DTFT) of rx is not necessarily
non-negative at all frequencies. In spite of this, incorporating the
non-negativity of the windowed PS estimate in the constraint set
has been shown [4] to improve the quality of PS estimation by
reducing the under-determinacy of our problem setup. This con-
straint can be represented as Frx ≥ 0, where Frx is the discrete
NF -point PS estimate, F := F̃W, F̃ is the NF × (2K − 1)
phase shifted discrete Fourier transform (DFT) matrix, and

W :=

⎡

⎢
⎣

0K−1 JK−1 −jJK−1

1 0T
K−1 0T

K−1

0K−1 IK−1 jIK−1

⎤

⎥
⎦ (20)

where 0K−1 is a vector of K − 1 zeros, IK−1 is the K − 1 iden-
tity matrix, and JK−1 is the K − 1 anti-identity matrix. It has
been established in [4, Appendix C] that Frx ≥ 0 =⇒ Rx � 0,
thus the latter Linear Matrix Inequality (LMI) constraint is re-
dundant when the former constraint is enforced. If we assume
sufficient averaging at each sensor m such that em ≈ 0, then
from (16) and (17d), we have that each measurement bit bm

corresponds to the following linear inequality in rx .

bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (21)

However, if the measurements at each sensor are not accu-
rate enough, i.e., ρ

(N )
m �= ρm , then the errors em may result

in sign
(
qT

m rx − tm
)
�= sign

(
qT

m rx + em − tm
)
, which cor-

responds to bits being flipped. In this case, we utilize the
Gaussian distribution of the errors {em}M

m=1 to derive the
following error model. First, we introduce the set notation
M+ = {m ∈ M|bm = +1} and M− = {m ∈ M|bm = −1}.
Assuming that errors are independent across sensors, the prob-
ability mass function of the bits {bm}M

m=1 can be parametrized
by rx as follows

f (b1 , . . . , bm ; rx) (22a)

=
∏

m∈M+

Pr (ρm + em ≥ tm )
∏

m∈M−

Pr (ρm + em < tm )

(22b)

=
∏

m∈M+

Φ
(

qT
m rx − tm

σm

) ∏

m∈M−

Φ

(
−
(
qT

m rx − tm
)

σm

)

(22c)

=
∏

m∈M
Φ

(
bm

(
qT

m rx − tm
)

σm

)

(22d)

where Φ(x) := 1√
2π

∫ x

−∞ e−u2 /2du is the cumulative distribu-
tion function (CDF) of the Gaussian distribution. This model
can be utilized in developing a Maximum Likelihood (ML)
formulation which is robust to flipped bits, as we will soon
demonstrate.
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Finally, we can utilize the fact that x (n) belongs to a cer-
tain class of parametric models in order to impose additional
structure on rx . Depending upon which modeling assumption
is invoked, we obtain the following formulations.

A. AR Models

1) Error Free Formulation: We first consider the case when
we have accurate power measurements. For an AR process, the
first K autocorrelation lags must satisfy (3). If the true autocor-
relation of the AR process were known, then one could have
formed a square system of p + 1 linear equations in α obtained
from (3) by taking l = 0 : p (shorthand for l ∈ {0, 1, . . . , p}).
Since the autocorrelation matrix is positive definite if and only
if the AR parameters are minimum-phase [11, p. 228], it follows
that this system of linear equations can be uniquely solved for
α, which also corresponds to the true minimum-phase solution.
In practice, when the true autocorrelations are unknown, the
traditional two-step approach uses sample autocorrelation esti-
mates obtained from the WSS process to solve the Yule-Walker
equations for α. The sample autocorrelation matrix in that case
can also be shown to be positive definite under mild conditions
[10, p. 93], and hence the Yule-Walker equations again ad-
mit a unique solution. Using sample autocorrelation estimates
to solve the Yule-Walker equations can also be interpreted as
solving an approximate Maximum-Likelihood estimation prob-
lem for α [14, p. 196], which yields the true AR parameters
when the sample size is large. Hence, the sample autocorrela-
tion lags in the range −p : p constitute a sufficient statistic for
estimating α.

Note that sample autocorrelation estimates of rx are not avail-
able in our setup since our problem involves estimation from a
finite number of bits, and not samples of the WSS process. An
estimate of the window of 2p − 1 autocorrelation lags obtained
from a few bits is not guaranteed to be a sufficient statistic for
estimating α. Thus, we propose to estimate rx and α jointly. In
order to make our problem less under-determined, we use the
information contained in the higher autocorrelation lags. As-
suming K ≥ p, we obtain the following overdetermined system
of linear equations
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rx (0) rx (−1) · · · rx (−p)
rx (1) rx (0) · · · rx (−p + 1)

...
...

. . .
...

rx (p) rx (p − 1) · · · rx (0)
...

...
. . .

...

rx (K − 1) rx (K − 2) · · · rx (K − p − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1
α1

...

αq

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎥
⎦

(23)
Denoting R̃x as the K × (p + 1) matrix defined in (23), α̃ :=

[1,α]T ∈ Cp+1 and eK
1 as the first canonic basis vector in RK ,

we can compactly express (23) as

R̃xα̃ = eK
1 (24)

which we refer to as the extended Yule Walker equations for an
AR process. In order to impose AR structure on rx , we consider

the following formulation

min.
rx ,α

∥
∥
∥R̃xα̃ − eK

1

∥
∥
∥

2

2
(25a)

s.t. bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (25b)

Frx ≥ 0, (25c)

rx ∈ P (25d)

Note that the problem is again non-convex since the cost function
is the composition of a convex function with a bilinear function
in rx and α.

2) Maximum Likelihood Formulation: When sample aver-
aging is insufficient to allow accurate estimation of ρm , we pro-
pose the following ML reconstruction scheme, which is more
robust to errors due to flipped bits. Given the bits {bm}M

m=1 , we
define the log-likelihood function LLN (rx) as

LLN (rx) := log f (b1 , . . . , bm ; rx)

:=
M∑

m=1

log Φ

(
bm

(
qT

m rx − tm
)

σm

)

(26)

The ML formulation is then given by

min.
rx ,α

−LLN (rx) + γ
∥
∥
∥R̃xα̃ − eK

1

∥
∥
∥

2

2
(27a)

s.t. Frx ≥ 0, (27b)

rx ∈ P (27c)

where the second term in the cost function is a regularization
term which imposes AR structure on rx and λ is a penalty
parameter. Note that LLN (rx) is convex since the CDF of the
Gaussian distribution is log-concave [15, p. 104] and by the
affine composition rule. However, the overall problem is non-
convex since the regularizer is non-convex.

B. ARMA Models

1) Error Free Formulation: Under the assumption that x (n)
can be described by an ARMA model, the autocorrelation lags
should satisfy (7). When the true autocorrelation lags of the
ARMA process are known, estimates of α and c can be deter-
mined in a two-step procedure where the AR parameters are
estimated from the autocorrelation lags first, and are then used
to solve for c. If the true autocorrelation matrix is unknown (as
is usually the case), it can be estimated from the samples of
the WSS process. In our setup, we are unable to do so since
the FC only receives a finite number of bits, without having
any access to the samples of the WSS process. Hence, we will
attempt to estimate the parameters rx ,α and c jointly. In or-
der to enhance estimation performance, the information in the
higher autocorrelation lags should be exploited to reduce under-
determinacy. Assuming K > p + q, we obtain the following
overdetermined system of linear equations involving the first K
autocorrelation lags

R̃xα̃ = c̃ (28)
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where c̃= [c, 0, . . . , 0]T ∈ CK , c= [c (0) , . . . , c (q)] ∈Cq+1 ,

α̃ = [1,α]T ∈ Cp+1 and R̃x ∈ CK×(p+1) is defined as

R̃x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rx (0) rx (−1) · · · rx (−p)
rx (1) rx (0) · · · rx (−p + 1)

...
...

. . .
...

rx (q) rx (q − 1) · · · rx (q − p)
rx (q + 1) rx (q) · · · rx (q − p + 1)

...
...

. . .
...

rx (K − 1) rx (K − 2) · · · rx (K − p − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)
In order to impose ARMA structure, we propose to use the

following formulation

min.
rx ,α,c

‖ R̃xα̃ − c̃‖2
2 (30a)

s.t. bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (30b)

Frx ≥ 0, (30c)

rx ∈ P (30d)

where M = {1, 2, . . . ,M} denotes the set of sensors. Note that
the problem is not convex since the cost function (30a) is the
composition of a convex function with a bilinear function in rx

and α.
2) Maximum Likelihood Formulation: Similar to the AR

case, the ML estimation problem for ARMA models can be
posed as

LLN (rx) := log f (b1 , . . . , bm ; rx)

:=
M∑

m=1

log Φ

(
bm

(
qT

m rx − tm
)

σm

)

(31)

The ML formulation is then given by

min.
rx ,α,c

−LLN (rx) + λ‖ R̃xα̃ − c̃ ‖2
2 (32a)

s.t. Frx ≥ 0, (32b)

rx ∈ P (32c)

which is also non-convex in rx and c.

V. ALGORITHMS

Although the problem formulations for both AR and ARMA
models are non-convex, they exhibit block separable structure
which makes them well suited for Block Coordinate Descent
(BCD) methods [16], [17] for obtaining approximate solutions.
BCD methods are a well known class of optimization tools that
are applicable to problems whose cost function and constraints
admit a conditionally decomposable structure. Since all problem
formulations in this article possess bilinear cost functions sub-
ject to separable convex constraints, they naturally fall within the
BCD framework, which yields the following simple algorithms.

A. AR Models

1) Error Free Formulation: Although problem (25) is non-
convex, if either of the variables rx or α is fixed, the resulting

subproblem is convex in the other variable. This suggests that
rx and α can be updated in an alternating fashion, which results
in a simple 2-block BCD algorithm consisting of the following
steps.

� Initialization: First, we solve the feasibility problem

find rx (33a)

s.t. bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (33b)

Frx ≥ 0, (33c)

rx ∈ P (33d)

in order to obtain a truncated K-lag autocorrelation se-
quence that is consistent with the inequalities correspond-
ing to the bit measurements {bm}M

m=1 , which is then used
to initialize the algorithm.

� α Update: If rx is fixed, α can be updated by solving
(25a) with respect to α. In terms of α, (25a) can be
represented as

g (α) :=
∥
∥R̄xα + ρ − eK

1

∥
∥2

2 = ‖ R̄xα + ρ̃ ‖2
2 (34)

where ρ ∈ CK is the first column of R̃x , R̄x ∈ CK×p

is obtained by deleting ρ from R̃x and ρ̃ = ρ − eK
1 .

Equation (34) is a least squares problem in α, whose closed
form solution is given by

α = −
(
R̄H

x R̄x + εIK

)−1 (
R̄H

x ρ̃
)

(35)

where ε > 0 is a regularization parameter which guards
against ill-conditioning of R̄x . In the event that the esti-
mated K-lag autocorrelation sequence is slowly decaying,
the columns of R̄x will be nearly linearly dependent. The
regularization term alleviates this problem, at the cost of
introducing a bias into our estimate.

� rx Update: Given an estimate of α, the update for rx can
be cast as a Quadratic Programming (QP) problem. To
show this, we first express the cost function (25a) in terms
of rx . Define the matrix EK

p+1 :=
[
eK

1 , . . . , eK
p+1

]
, whose

columns are the first (p + 1) canonical basis vectors in
RK . Then, we have

R̃xα̃ = RT
x EK

p+1α̃ (36a)

=

⎛

⎝
K−1∑

k=−(K−1)

rx (k)ΘK
−k

⎞

⎠EK
p+1α̃ (36b)

=

⎛

⎜
⎜
⎝rx (0)Θ0 +

K−1∑

k=1

Re {rx (k)} (ΘK
k + ΘK

−k︸ ︷︷ ︸
ΦK

k

)

(36c)

+
K−1∑

k=1

Im {rx (k)} (jΘK
−k − jΘK

k︸ ︷︷ ︸
ΨK

k

)

⎞

⎟
⎟
⎠EK

p+1α̃
︸ ︷︷ ︸

γ

(36d)



KONAR AND SIDIROPOULOS: PARAMETRIC FRUGAL SENSING FOR AUTOREGRESSIVE AND AUTOREGRESSIVE MOVING AVERAGE POWER 5359

= rx (0) γ +
K−1∑

k=1

Re {rx (k)}ΦK
k γ (36e)

+
K−1∑

k=1

Im {rx (k)}ΨK
k γ (36f)

=
[
γ,ΦK

1 γ, . . . ,ΦK
K−1γ,ΨK

1 γ, . . . ,ΨK
K−1γ

]

︸ ︷︷ ︸
Π

rx

(36g)

= Πrx (36h)

where Π ∈ CK×2K−1 . Thus, in order to update rx , we are
required to solve a problem of the form

min.
rx

∥
∥Πrx − eK

1

∥
∥2

2 (37a)

s.t. bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (37b)

Frx ≥ 0, (37c)

rx ∈ P (37d)

which is a QP problem in rx , and can be efficiently solved
via convex programming.

The algorithm can be summarized as follows

Algorithm 1: 2-block BCD for AR Estimation.
Initialization: Solve the problem (33) to obtain a feasible
truncated K-lag autocorrelation vector rx . Set k := 0.
Repeat
• Fix r(k)

x . Update α(k+1) according to (35).
• Fix α(k+1) . Update r(k+1)

x by solving the QP problem
(37).

• Compute cost value v(k+1) = ‖ R̃(k+1)
x α̃(k+1) − eK

1 ‖
2
2

• Set k := k + 1.
Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded.

Since the update step for each variable is conditionally opti-
mal given the other variable, the algorithm generates a sequence
of iterates with monotonically non-increasing cost. In addition,
we have the following result.

Proposition 1: If we impose loose upper and lower bounds
on the elements of α, as is implicitly done for ε > 0 through
norm regularization, then every limit point of Algorithm 1 is a
stationary point of (25).

Proof: In [18, Theorem 3.1], it is shown that for any se-
quence of iterates generated by BCD, there exists a convergent
subsequence whose limit point corresponds to a stationary point,
provided the constraint set of each block is compact and the
block which yields the best improvement is selected for update
in each iteration. The feasible set of the block rx can be repre-
sented as rx ∈ P ∩ {rx |Frx ≥ 0} ∩ {rx | bm (qT

m rx − tm ) ≥
0, ∀ m ∈ M}. The second set represents a polyhedral cone,
which is closed and convex, while the last constraint defines a
convex polyhedron, which is also closed. It thus follows that

the intersection of these two sets is closed also. The first set is
a convex polyhedron, which is closed and bounded, and hence,
by the Heine-Borel Theorem [21, p. 41], is also compact. As the
intersection of a compact set and a closed set is compact [21,
p. 38], it follows that the feasible set of rx is compact. Since
α ∈ Cp , which is not compact, we can impose a loose upper
and lower bound on the elements of α in order to make it com-
pact. Moreover, since there are only two blocks, after optimally
updating one block, the other block is guaranteed to yield the
best improvement in the next iteration. Thus, the update rule
proposed in [18] corresponds to the alternating update for the
case of BCD with two blocks. �

2) ML Formulation: The ML formulation (27) is also bilin-
ear in the variables rx and α, thus allowing us to adopt the
same approach outlined in the previous section. The algorithm
is composed of the following steps.

� Initialization: First, we solve the problem

min.
rx ,α,c

−LLN (rx) (38a)

s.t. Frx ≥ 0, (38b)

rx ∈ P (38c)

in order to obtain an ML estimate of rx which is then used
to initialize the algorithm.

� α Update: Fixing rx , the update for α is given by (35).
� rx Update: For a fixed α, the update for rx is the solution

of the problem

min.
rx

−LLN (rx) +
∥
∥Πrx − eK

1

∥
∥2

2 (39a)

s.t. Frx ≥ 0, (39b)

rx ∈ P (39c)

which is a convex optimization problem in rx .
The overall algorithm is given by

Algorithm 2: 2-block BCD for ML AR Estimation.
Initialization: Solve the problem (38) to obtain an ML
estimate of the truncated K-lag autocorrelation vector rx .
Set k := 0.
Repeat
• Fix r(k)

x . Update α(k+1) according to (35).
• Fix α(k+1) . Update r(k+1)

x by solving the problem (39).

• Compute cost value v(k+1) = −LLN
(
r(k+1)

x

)

+ ‖ R̃(k+1)
x α̃(k+1) − eK

1 ‖
2
2

• Set k := k + 1.
Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded.

Proposition 2: If we impose loose upper and lower bounds
on the elements of α, every limit point of Algorithm 2 is a
stationary point of (25).

Proof: This follows from the fact that when loose upper and
lower bounds on α are applied, the conditions stated in [18] are
satisfied. �
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B. ARMA Models

For ARMA models, we propose a 2-block and a 3-block BCD
algorithm for obtaining approximate solutions to (30) and (32).

2-block approach:
1) Error Free Formulation: Note that if either of the vari-

able blocks {α, c} or rx is fixed, then (30) becomes convex
in the other variable block. Hence, the variable blocks rx and
{α, c} can be updated in an alternating fashion. Our algorithm
consists of the following steps.

� Initialization: An initial estimate of rx obtained from the
solution of an instance of the feasibility problem (33)
serves as the initialization point.

� {α, c}Update: Since the constraints of (30) do not involve
α, c, given a feasible rx , we can obtain an estimate of the
variables δ :=

[
αT , cT

]T ∈ Cp+q+1 by simply solving
the Yule-Walker equations with respect to δ. Performing
some algebraic manipulations allows us to express the cost
function (30a) in terms of δ as

f (δ) :=‖ R̃xα̃ − c̃‖2
2 = ‖ Qδ + ρ ‖2

2 (40)

where ρ ∈ CK corresponds to the first column of R̃x and
the matrix Q ∈ CK×(p+q+1) is defined as

Q =
[
R̄x −EK

q+1
]

(41)

Here, R̄x ∈ CK×p is obtained by deleting ρ from R̃x and
EK

q+1 ∈ RK×(q+1) is a matrix whose columns comprise
the first (q + 1) canonical basis vectors in RK . Thus,
we are required to solve a least squares (LS) problem of
the form

min.
δ

‖ Qδ + ρ ‖2
2 (42)

for which the closed form solution is given by

δ = −
(
QH Q + εIK

)−1 (
QH ρ

)
(43)

where ε > 0 is a regularization parameter. From (43), the
variables α and c are readily obtained.

� rx Update: Fixing δ, the update for rx reduces to a QP
problem. Following the steps outlined in (36), the cost
function (30a) can be expressed in terms of rx as

‖ R̃xα̃ − c̃‖2
2 = ‖ Πrx − c̃ ‖2

2 (44)

Thus, in order to update rx , we are required to solve a
problem of the form

min.
rx

‖ Πrx − c̃‖2
2 (45a)

s.t. bm

(
qT

m rx − tm
)
≥ 0, ∀ m ∈ M (45b)

Frx ≥ 0, (45c)

rx ∈ P (45d)

which is a QP problem in rx .
The algorithm can be summarized as follows
The algorithm generates a sequence of iterates with monoton-

ically non-increasing cost. In addition, we have the following
result.

Algorithm 3: 2-block BCD for ARMA Estimation.
Initialization: Solve the problem (33) to obtain a feasible
truncated K-lag autocorrelation vector r(0)

x . Set k := 0.
Repeat
• Fix r(k)

x . Update δ(k+1) according to (43).
• Fix δ(k+1) . Update r(k+1)

x by solving the QP problem
(45).

• Compute cost value v(k+1) = ‖ R̃(k+1)
x α̃(k+1)

−c̃(k+1) ‖2
2

• Set k := k + 1.
Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded.

Proposition 3: Every limit point generated by Algorithm 3
is a stationary point of problem (30).

Proof: This follows from the conditions laid out in [18]. It
has already been established that the feasible set of rx is com-
pact, while δ ∈ Cp+q+1 can be made compact by the imposition
of loose upper and lower bounds on its elements, which is im-
plicitly accomplished via norm regularization. �

2) ML Formulation: A 2-block BCD algorithm can also be
derived for the ML formulation (32).

� Initialization: The algorithm is initialized with an initial
ML estimate of rx obtained by solving an instance of (38).

� {α, c} Update: The update for δ =
[
αT , cT

]T
is exactly

the same as in the error free case.
� rx Update: Given an estimate of δ =

[
αT , cT

]T
, the up-

date for rx is given by

min.
rx

−LLN (rx) + ‖ Πrx − c̃ ‖2
2 (46a)

s.t. Frx ≥ 0, (46b)

rx ∈ P (46c)

which is a convex optimization problem in rx .
The overall algorithm can be summarized as

Algorithm 4: 2-block BCD for ML ARMA Estimation.
Initialization: Solve the problem (38) to obtain a ML
estimate of the truncated K-lag autocorrelation vector r(0)

x .
Set k := 0.
Repeat
• Fix r(k)

x . Update δ(k+1) according to (43).
• Fix δ(k+1) . Update r(k+1)

x by solving the problem (46).

• Compute cost value v(k+1) = −LLN
(
r(k+1)

x

)
+

‖ R̃(k+1)
x α̃(k+1) − c̃(k+1) ‖

2
2

• Set k := k + 1.
Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded.

Proposition 4: Every limit point generated by Algorithm 4
is a stationary point of problem (32).
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Proof: When the elements of δ are loosely bounded, the
proof is exactly the same as in the error free case. �

3-block approach:
3) Error Free Formulation: Although {α, c} is the maxi-

mal set for which problem (30) is convex, instead of defining
the variables {α, c} as a single block, we may instead opt to
define each variable as a block, in which case we have 3 blocks
of variables. The BCD algorithm in this case consists of the
following steps.

� Initialization: We require initial estimates r(0)
x ,α(0) , c(0)

of each of the variables in order to initialize the algorithm.
An estimate of r(0)

x can be obtained by solving the feasibil-
ity problem (33). In order to obtain estimates of α(0) and
c(0) , we refer to the Yule-Walker equations (28). From the
last K − 1 − q equations of (28), we have

R̂(0)
x α = ρ̂(0) (47)

where ρ̂ = −[rx (q + 1) , . . . , rx (K − 1)]T ∈
C(K−q−1)×1 , R̂x ∈ C(K−q−1)×p is defined as

R̂x :=

⎡

⎢
⎢
⎢
⎢
⎣

rx (q) rx (q − 1) · · · rx (q − p + 1)
rx (q + 1) rx (q) · · · rx (q − p + 2)

...
...

. . .
...

rx (K − 2) rx (K − 3) · · · rx (K − p − 1)

⎤

⎥
⎥
⎥
⎥
⎦

(48)
and the superscript denotes the dependence on r(0)

x . The
initial estimate of α is then obtained from the LS solution
of (48), which is given by

α(0) =
(
R̂(0)H

x R̂(0)
x + εIK

)−1
R̂(0)H

x ρ̂(0) (49)

where ε > 0 is a regularization parameter. Meanwhile,
from the first q + 1 equations of (28), we have

c(0) = R̆(0)
x α̃(0) (50)

where R̆x ∈ C(q+1)×(p+1) corresponds to

R̆x :=

⎡

⎢
⎢
⎢
⎢
⎣

rx (0) rx (−1) · · · rx (−p)
rx (1) rx (0) · · · rx (−p + 1)

...
...

. . .
...

rx (q) rx (q − 1) · · · rx (q − p)

⎤

⎥
⎥
⎥
⎥
⎦

(51)
and the superscript again denotes the dependence on r(0)

x

and α(0) .
� Update Rule: Once initial estimates of all variables are

available, we update the variable blocks according to
the Maximum Block Improvement (MBI) rule2 proposed

2We choose this update rule over the well known Gauss-Seidel (GS) update
rule [16, p. 268] since the convergence of the BCD method for non-convex
problems using the latter rule can only be established under certain restrictive
conditions (see [16], [19] and references therein). In contrast, the MBI update
rule guarantees convergence under more relaxed conditions. Although conver-
gence of BCD using the GS update rule for general non-convex problems can
be established with a proximal point modification of the GS method [20], exper-
imental results indicated the sensitivity of this modified method to the choice
of the coefficients of the added proximal term. Hence, we omitted this method
from our manuscript.

in [18]. According to this rule, at each iteration, we
determine the conditionally optimal update for each block,
but finally we only choose to update the block which
results in the maximum reduction of the cost function.
At iteration k, if r(k)

x ,α(k) and c(k) represent the current
block variables, then the conditionally optimal updates
for each block can be determined as follows.
Fixing α(k) and c(k) , the optimal update of rx , which we
denote as ropt

x is given by the QP problem (45). For α and
c, the conditionally optimal updates are again obtained
from the Yule-Walker (28), which as a function of α, can
be expressed as

Ř(k)
x α = č(k) (52)

where č ∈ CK is obtained by subtracting the first column
of R̃x from c̃ and Řx ∈ CK×p is the matrix obtained by
deleting the first column of R̃x . The conditionally optimal
update of α is then given by the LS solution of (52)

αopt =
(
Ř(k)H

x Ř(k)
x + εIK

)−1
Ř(k)H

x č(k) (53)

where ε > 0 is a regularization parameter and the super-
script denotes the dependence on the respective block vari-
ables at the kth iteration. For c, the conditionally optimal
update is again given by

copt = R̆(k)
x α̃(k) (54)

where R̆x was defined in the previous section, and the
superscript k again indicates the dependence on the re-
spective variable block at the kth iteration.
After determining the update for each block, it is checked
to see which of the conditional updates achieves the maxi-
mum reduction in the cost function (30a), i.e., we evaluate
the functions

f1
(
ropt

x

)
=
∥
∥
∥Π(k)ropt

x − c̃(k)
∥
∥
∥

2

2
(55a)

f2
(
αopt

)
=
∥
∥
∥R̃(k)

x α̃opt − c̃(k)
∥
∥
∥

2

2
(55b)

f3
(
copt

)
=
∥
∥
∥R̃(k)

x α̃(k) − c̃opt
∥
∥
∥

2

2
(55c)

following which only the block that yields the minimum
cost amongst the functions defined in (55) is chosen to be
updated, while the other blocks remain unchanged. Thus,
if we define y1 := ropt

x ,y2 := αopt ,y3 := copt , the block
which yields the maximum improvement is chosen as

iopt = arg min
1≤i≤3

{fi (yi)} (56)

and the update rule is given by

z(k+1)
io p t = yio p t (57a)

z(k+1)
i = z(k)

i ,∀ i ∈ {1, 2, 3} \ iopt (57b)

where z(k)
1 := r(k)

x , z(k)
2 := α(k) and z(k)

3 := c(k) .
Overall, the algorithm can be summarized as
It is obvious that the algorithm produces a monotonically

decreasing cost sequence. In addition, the following holds.
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Algorithm 5: 3-block BCD with MBI for ARMA
Estimation.

Initialization: Obtain initial estimates r(0)
x ,α(0) , c(0)

according to (33), (49) and (50) respectively. Compute

initial cost value v(0) = ‖ R̃(0)
x α̃(0) − c̃(0) ‖

2
2 . Set k := 0.

Repeat
• Fix α(k) and c(k) . Determine ropt

x according to (45).
• Fix r(k)

x and c(k) . Determine αopt according to (53).
• Fix r(k)

x and α(k) . Determine copt according to (54).
• Choose the block which yields maximum improvement

according to (56).
• Update the variables according to (57).
• Set v(k+1) = f (yio p t )
• Set k := k + 1.

Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded

Proposition 5: If we impose loose upper and lower bounds
on the elements of α and c, then every limit point of Algorithm 5
is a stationary point of problem (30).

Proof: This follows from the conditions in [18] being satis-
fied. �

Remark 1: The proof of convergence of the MBI method
does not require the subproblem associated with each block
variable to have a unique solution; a condition which is neces-
sary for the convergence of BCD with three or more blocks of
variables using the GS update rule. The downside is the higher
computational cost incurred in solving all subproblems in each
iteration in order to determine the best block to update.

4) ML Formulation: The BCD algorithm with MBI update
rule for the ML formulation is similar to the error free case, and
proceeds as follows.

1) Initialization: An initial ML estimate of r(0)
x can be ob-

tained by solving (38), while initial estimates of α(0) and
c(0) are obtained from (49) and (50) respectively.

2) Update Rule: If r(k)
x ,α(k) and c(k) represent the iterates

at the kth iteration, then ropt
x (the conditional update of

r(k)
x ) is obtained by fixing α(k) and c(k) and solving the

problem (46). The updates of α(k) and c(k) (αopt and copt

respectively) are the same as (53) and (54). Following the
updates, we evaluate the functions 1

f1
(
ropt

x

)
= −LLN

(
ropt

x

)
+
∥
∥
∥Π(k)ropt

x − c̃(k)
∥
∥
∥

2

2
(58a)

f2
(
αopt

)
= −LLN

(
r(k)

x

)
+
∥
∥
∥R̃(k)

x α̃opt − c̃(k)
∥
∥
∥

2

2
(58b)

f3
(
copt

)
= −LLN

(
r(k)

x

)
+
∥
∥
∥R̃(k)

x α̃(k) − c̃opt
∥
∥
∥

2

2
(58c)

and choose the block which yields the maximum improve-
ment in cost according to (56). The update rule is defined
in (57).

The overall algorithm can be summarized as

Algorithm 6: 3-block BCD with MBI for ML ARMA
Estimation.

Initialization: Obtain initial estimates r(0)
x ,α(0) , c(0)

according to (38), (49) and (50) respectively. Compute

initial cost value v(0) = −LLN
(
r(0)

x

)
+

‖ R̃(0)
x α̃(0) − c̃(0) ‖

2
2 . Set k := 0.

Repeat
• Fix α(k) and c(k) . Determine ropt

x according to (46).
• Fix r(k)

x and c(k) . Determine αopt according to (53).
• Fix r(k)

x and α(k) . Determine copt according to (54).
• Choose the block which yields maximum improvement

according to (56).
• Update the variables according to (57).
• Set v(k+1) = f (yio p t )
• Set k := k + 1.

Until Improvement in cost function < tolerance factor
in the last 10 iterations OR specified no. of iterations
exceeded

Proposition 6: If we impose loose upper and lower bounds
on the elements of α and c, then every limit point of Algorithm 6
is a stationary point of problem (32).

Proof: The proof is exactly the same as in the error
free case. �

Remark 2: Note that there is no guarantee that the AR pa-
rameter estimates obtained will be minimum-phase, since it is
known [10] that solving an overdetermined system of equa-
tions to determine AR parameters does not generally yield a
minimum-phase solution. Nevertheless, our aim here is to esti-
mate the power spectrum; we use the ARMA parametrization
only as an intermediate vehicle.

VI. SIMULATION RESULTS

A. AR Models

We first present simulations for the AR case with accurate
power measurements. The natural benchmark here is a two-step
approach: solving the nonparametric problem in (33), followed
by one-time fitting of the AR model parameters according to
(35). The LP feasibility problem (33) and the QP problem (35)
were modeled using YALMIP [22] and solved using the solver
SeDuMi [23]. In all experiments, the maximum iteration counter
of the BCD algorithm was set to 60 iterations (each consisting of
2 alternating updates) and the exit tolerance was set to 10−5 . We
obtained PS estimates from the output of the BCD algorithm
by taking the DFT of the autocorrelation estimates and also
by plugging the model parameter estimates into (4). We used
the Normalized Mean Square Error (NMSE) as a performance

criterion, which is defined as NMSE = E
[
‖Sx −Ŝx ‖2

2

‖Sx ‖2
2

]
where

Sx is the true PS and Ŝx is the estimated PS, with both spectra
normalized by their peak values. The expectation is taken with
respect to the randomness of the signal and the broadband filters.
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Fig. 2. Mean Normalized spectra for a complex AR(3) model.

We now present an illustrative example showcasing the
effectiveness of our approach. A complex AR(3) model was
used to generate a WSS stochastic process, and a sensing
scenario was considered with M = 100 sensors, K = 25 and
threshold t empirically tuned to select 40 sensors to transmit
bm = 1 to the FC, which is assumed to know the true model
order in this experiment. Both methods were initialized from
the same instance of the LP feasibility problem. The results
obtained by averaging over 400 Monte-Carlo trials are depicted
in Fig. 2, with each PS estimate normalized by its peak value.
The non-parametric LP initial estimate (black), obtained by
taking the NF point DFT correctly estimates the peak of the true
AR PS, but the subsequent AR fitting procedure (green) does
not improve the estimation performance (in fact the spectral
lobe widens). The parametric AR estimate (blue), obtained from
the BCD algorithm, exhibits the best estimation performance.
Note that the quality of the spectral estimate is very satisfactory
considering that only 100 bits (roughly equivalent to 3 floats
in IEEE 32-bit precision standard) were used at the FC. Hence,
even though the BCD algorithm is incapable of solving (25)
exactly, it can generate high quality approximate solutions.
Another option for obtaining the final PS estimate, by taking
the DFT of the autocorrelation vector returned by BCD, is
depicted in magenta. The presence of ripples is due to the fact
that we only estimate a finite window of the autocorrelation
sequence, which degrades the quality of the spectral estimate.

A more generic quantitative comparison is presented in Fig. 3,
where we considered a sensing scenario with M = 100 sen-
sors, set K = 50 and tuned the threshold t to vary the num-
ber of sensors reporting above threshold. The spectral NMSE
was computed for 30 randomly drawn complex AR(5) models,
with the NMSE for each value of t being averaged out over
200 Monte-Carlo trials for each AR model. Prior knowledge of
the true model order was again assumed. Both methods were
again initialized from the solution of the same instance of the LP
feasibility problem. Again, the superior performance of the BCD
algorithm is noted, with the parametric AR estimate (blue) ex-

Fig. 3. NMSE vs No. of sensors above threshold for complex AR(5) models
with 100 sensors.

Fig. 4. NMSE vs Model order estimate for complex AR(4) models.

hibiting lowest spectral NMSE. The one step AR fitting method
is much worse-off in comparison. Extensive simulations across
a range of model orders and sensing scenarios revealed that
the BCD algorithm always delivers the best performance, thus
providing supporting evidence of its approximation quality.

In many practical scenarios however, the true model order of
the underlying AR process is unknown, and one must typically
use an estimate of the true model order. Assuming that an upper
bound on the true model order is available, we carried out an
experiment where we randomly generated 30 AR(4) models
and considered a scenario with M = 200 sensors, K = 30 and
selected the threshold to make 40 sensors report above threshold.
The spectral NMSE was computed as a function of the model-
order overestimate for each AR model over 200 Monte-Carlo
trials, with the final result being averaged out across all models
and is depicted in Fig. 4. From the figure it is observed that the
NMSE obtained from the PS estimates of the BCD algorithm
increases very gracefully (notice the logarithmic scaling of the
y-axis), even when the upper bound on the true model order



5364 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 20, OCTOBER 15, 2016

Fig. 5. Mean Normalized Spectra for a complex AR(3) model in the presence
of bit errors.

is made very loose, thus demonstrating the robustness of our
proposed algorithm to model order over-estimation.

Finally, we considered the case when sample averaging at
each sensor is not sufficient to allow accurate estimation of ρm ,
which results in errors in the power estimates prior to thresh-
olding. We considered a sensing scenario for a complex AR(3)
model with M = 200,K = 40 and set the number of sensors
above threshold to 80. We used the ML formulation which ex-
plicitly models the errors and compared it against the ‘naive’
error-free formulation for solving the PS reconstruction prob-
lem. The ML formulation was solved using CVX [24] in MAT-
LAB. We set the penalty parameter λ = 1000 in order to impose
AR structure. The PS estimates averaged over 400 Monte-Carlo
trials are depicted in Fig. 5. The random errors in the power
measurements resulted in 17% of the power measurement bits
being flipped on average. It is evident that the ML PS estimates
(solid lines) are of much better quality than their non-ML coun-
terparts(dashed lines). This demonstrates that the ML estimates
are robust to bit flips, in contrast to the estimates obtained from
the original formulation, which does not take into account the
measurement errors.

B. ARMA Models

We now present simulations for the ARMA case. All BCD
algorithms for ARMA estimation were run for a maximum of
120 iterations, with an exit tolerance of 10−5 . For the ML for-
mulations, we used CVX for solving the optimization subprob-
lems, whereas we used YALMIP for the non-ML formulations,
with SeDuMi as the solver. A 3-block BCD algorithm with a
Gauss-Seidel update rule was also included in our comparison,
in addition to the other two algorithms.

We first illustrate the performance of BCD in the ARMA
case with accurate power measurements. A complex ARMA
(2, 2) process was generated, and a sensing scenario was con-
sidered with M = 200 sensors, K = 20 and a single threshold
t, resulting in 80 sensors reporting above threshold. Knowledge

Fig. 6. Mean Normalized Spectra for a complex ARMA(2, 2) model.

of the true model orders of the AR and MA components was
assumed at the FC. The results were averaged over 400 Monte-
Carlo trials, and are depicted in Fig. 6, with all spectra being
normalized by their peak values (before averaging—for the LP
method, there is considerable variance in the peak location,
which reduces the peak value after averaging). We only plot-
ted the parametric PS estimates (i.e., obtained from estimates
of α and c) in this case. The estimation results are again very
satisfactory, considering the fact that the data record (i.e., the
number of bits) is roughly equivalent to 3 IEEE double preci-
sion floats. The BCD algorithms outperform the non-parametric
LP method and also exhibit superior performance compared to
fitting model parameters from the LP estimate. From the fig-
ure, it is observed that the MBI method demonstrates the best
performance, however it is the most computationally intensive
amongst the proposed BCD algorithms. Another observation
is that the 3 block BCD method with GS update rule demon-
strates competitive performance in practice compared to the
other methods.

For a more generic quantitative experiment, we randomly
generated 30 complex ARMA(3, 3) models, considered a sens-
ing scenario with M = 200 sensors, K = 25, and varied the
threshold t in order change the number of sensors reporting
above threshold. Knowledge of the true model order was again
assumed. The spectral NMSE as a function of the number of
sensors reporting above threshold is depicted in Fig. 7, with
each point corresponding to 200 Monte-Carlo trials per ARMA
model, averaged out over all models. It is observed that the
estimation performance is very poor when the threshold is
set high (i.e., few sensors report above threshold), but gradu-
ally improves as the threshold is set lower. Initially, the BCD
algorithms do not offer marked improvement over the non-
parametric LP estimate, but as the threshold is decreased the
gap in estimation performance between the LP estimate and the
proposed algorithms increases. Below a certain threshold level,
the BCD algorithms produce substantial improvement in estima-
tion performance over the initial LP estimate. The 2-block BCD
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Fig. 7. NMSE vs No. of sensors above threshold for complex ARMA(3, 3)
models with 200 sensors.

Fig. 8. NMSE vs Model order overestimation for complex
ARMA(2, 2) models.

algorithm demonstrated the best overall performance and was
also the quickest to achieve convergence amongst the proposed
algorithms.

We also considered the case when the true model order of the
AR and MA components is not known at the FC; instead only
an upper bound on the order of each component is available.
In order to investigate the performance of our proposed algo-
rithms, we randomly generated 30 ARMA(2, 2) models, and
designed a sensing scenario with M = 200 sensors, K = 30
and threshold selected to make 160 sensors report above thresh-
old. The spectral NMSE as a function of the order overestimate
in each component is depicted in Fig. 8. Each point was ob-
tained by Monte-Carlo averaging over 200 trials per model, fol-
lowed by averaging across all models. Similar to the AR case,
it was observed that the algorithms are robust to model order
overestimation, with the NMSE not being appreciably affected

Fig. 9. Mean Normalized Spectra for a complex ARMA(2, 3) model in the
presence of bit errors.

as the upper bound on the order of each component is made
loose.

Finally, when insufficient sample averaging at each sensor
results in random bit-flips, we tested the performance of the ML
formulations against the non-ML formulations for a randomly
generated complex ARMA(2, 3) model in a scenario compris-
ing M = 200 sensors, K = 20 and 80 sensors above threshold,
with prior knowledge of the true model order. The PS estimates
obtained over 400 Monte-Carlo trials are depicted in Fig. 9.
The errors in the soft power measurements produced approxi-
mately 28 flipped bits on average. We omitted the 3-block GS
method in this comparison. From the figure, it is apparent that
the ML formulations perform considerably better compared to
their non-ML counterparts. Although it may appear from the
figure that the quality of the ML PS estimates obtained is not
very satisfactory, note that the NMSE is still small. This is
because the notch is very sharp, and the error there is under
−20 dB, so the integral effect is negligible in terms of NMSE.

VII. CONCLUSION

We considered a network sensing scenario, consisting of
scattered low-end sensors transmitting randomly filtered, sam-
ple averaged, one-bit quantized power measurements to a FC.
Assuming that the underlying WSS process admits an AR or
ARMA parametrization, we considered corresponding paramet-
ric power spectrum sensing from such binary power measure-
ments. First the case where sensor sample averaging is sufficient
to provide accurate bit measurements was considered, and the
AR and ARMA power spectrum sensing problems were formu-
lated as block-separable optimization problems. Their block-
separable structure was exploited to develop different BCD
algorithms with good convergence properties, considering the
inherent computational difficulty of the problems considered.
Next, the problem was revisited from a statistical estimation
viewpoint. Relaxing the sample averaging requirement at each
sensor, the errors in the noisy soft power estimates were modeled
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as being Gaussian, which was utilized to propose ML formula-
tions for AR and ARMA PS estimation, which are also block-
separable. The block separable structure of these problems was
again exploited to develop BCD algorithms with good conver-
gence properties. Simulations demonstrated the high quality of
the approximate solutions generated by the BCD algorithms
under various scenarios, including cases where only an upper
bound on the true model order is known. In the presence of
bit flips introduced by quantization of noisy soft power mea-
surements, the ML formulations outperformed their non-ML
counterparts and demonstrated considerable robustness.
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