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Abstract—Massive MIMO systems are expected to enable great
improvements in spectral and energy efficiency. Realizing these
benefits in practice, however, is hindered by the cost and com-
plexity of implementing large-scale antenna systems. A potential
solution is to use transmit antenna selection for reducing the num-
ber of radio-frequency (RF) chains at the base station. In this
paper, we consider the NP-hard discrete optimization problem of
performing transmit antenna selection in the downlink of a single
cell, multiuser massive MIMO system by maximizing the down-
link sum-rate capacity with fixed user power allocation subject to
various RF switching constraints. Whereas prior work has focused
on using convex relaxation based schemes, which lack theoretical
performance guarantees and can be computationally demanding,
we adopt a very different approach. We establish that the objec-
tive function of this antenna selection problem is monotone and
satisfies an important property known as submodularity, while the
RF switching constraints are expressible as the independent sets
of a matroid. This implies that a simple greedy algorithm can be
used to guarantee a constant-factor approximation for all problem
instances. Simulations indicate that greedy selection yields a near-
optimal solution in practice and captures a significant fraction of
the total downlink channel capacity at substantially lower com-
plexity relative to convex relaxation based approaches, even with
very few RF chains. This paves the way for substantial reduction in
hardware complexity of massive MIMO systems while using very
simple algorithms.

Index Terms—Multi-user massive MIMO, transmit antenna se-
lection, sum-rate capacity, discrete optimization, submodularity,
matroids, greedy algorithm.
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I. INTRODUCTION

MASSIVE MIMO [2] is currently a leading physical-layer
technology candidate for implementation in future 5G

wireless cellular systems [3], [4]. The basic idea of massive
MIMO involves equipping a cellular base station (BS) with a
large number of transmit antennas for the purpose of serving
few users sharing the same time-frequency resource. Theoreti-
cal studies have demonstrated that the spatial multiplexing and
array gains offered by such large-scale antenna systems can re-
sult in dramatic improvements in performance with regard to
data rate, spectral and energy efficiency and link reliability, rel-
ative to conventional MIMO systems [2], [5]–[7]. Additionally,
these findings have been verified via several experiments con-
ducted using measured propagation channels. However, in order
to successfully reap these benefits in practice, one has to take
into account the cost and hardware complexity associated with
implementing large-scale antenna systems.

In conventional MIMO systems with few transmit antennas,
each antenna element is provided with a dedicated RF chain.
While antenna elements are fairly inexpensive and small, RF
chains are costly, bulky, and power-consuming. Hence, assign-
ing a dedicated RF chain to every antenna element is practically
infeasible in massive MIMO systems, due to the large number
of BS antennas. Consequently, the design of transmit precoders
which use a limited number of RF chains to strike a favorable
balance between performance and hardware efficiency is a well
motivated problem for massive MIMO.

One possible approach is transmit antenna selection, where
a network of RF switches is used to connect the RF chains
with a subset of antennas. Transmit antenna selection in con-
ventional MIMO systems (both single and multi-user ones) has
been previously considered in [8]–[15]. For point-to-point mas-
sive MIMO systems, [16] proposed a pair of heuristic antenna
selection algorithms with the goal of improving energy effi-
ciency. Meanwhile, [17] considered SNR maximization as the
selection criterion and developed a polynomial-time algorithm
for optimally solving the problem, irrespective of the number of
transmit antennas, as long as the number of receive antennas is
limited to two. In [18], Gao et al. considered the multi-user case
with a single receive antenna per user, and formulated the prob-
lem as maximizing the downlink sum-rate capacity with prede-
termined user power allocation subject to a fully-flexible (FF)
switching constraint on the total number of selected antennas.
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The authors adopted a convex relaxation based approach which
first requires solving a relaxed convex optimization problem fol-
lowed by a post-processing rounding step to determine the set of
antennas. Thereafter, a zero-forcing beamformer (ZFB) was de-
signed using the selected antennas for evaluating the practical
performance of the selection scheme. Experiments conducted
using measured massive MIMO channels revealed that the pro-
posed two-step approach is capable of exploiting the significant
correlation that exists across the power profiles of the antenna
elements to attain a considerable fraction of the data rate achiev-
able using all antennas. Similar results were reported in [19],
[20], where the approach was extended to the case of partially
connected (PC) switching constraints. Hence, antenna selec-
tion has much potential as a means of achieving a favorable
performance-complexity trade-off in massive MIMO systems.

In this paper, we adopt, at a high level, the same two-step
approach as [18]–[20]; i.e., we first consider the problem of
antenna subset selection which maximizes the downlink sum-
rate capacity of a multi-user massive MIMO system with fixed
user power allocation subject to various switching constraints
imposed on the network of RF switches, followed by design-
ing a ZFB for the selected antennas. The major difference of
our present work with the aforementioned references lies in the
crucial first step: we refrain from employing a relaxation based
selection algorithm. As mentioned previously, this approach
has been empirically observed to work well in certain settings.
However, solving a general convex programming problem for
massive MIMO systems can be computationally demanding,
even practically intractable. Furthermore, apriori one cannot
theoretically guarantee that this heuristic convex relaxation ap-
proach will work well for an arbitrary problem instance. Since
the antenna selection problem under consideration is known to
be NP–hard in its general form, a natural question arises as to
whether there even exists a polynomial-time algorithm which
is both computationally efficient and theoretically sound for all
instances.

Our key contribution is that we provide an affirmative answer
to the above question. To be specific, we first establish that all
instances of antenna selection based on the downlink capacity
maximization criterion with fixed user power allocation can be
equivalently expressed in the form of the maximum entropy
sampling problem [21], whose objective function is monotone
and additionally satisfies an important property known as sub-
modularity [22]. Such a class of discrete set-functions is partic-
ularly notable for exhibiting a natural diminishing returns prop-
erty. We also establish that a variety of RF switching constraints
arising in both FF and PC RF switching networks can be explic-
itly expressed as the independent sets of a matroid [23], which
are a very convenient and powerful mathematical abstraction
for describing combinatorial structures. As a result, the antenna
selection problem can be viewed as maximizing a monotone
submodular function over the independent sets of a matroid.
The upshot is that we are able to use a simple greedy algorithm
to obtain solutions for antenna selection with minimal computa-
tional effort while also guaranteeing constant factor approxima-
tion for all instances by invoking a series of celebrated results
[24], [25] regarding constrained submodular maximization. For

the case of FF RF switching, the greedy algorithm guarantees a
worst-case approximation factor of (1− 1/e),1 which is further-
more un-improvable in polynomial-time; meanwhile, we obtain
a 1/2-factor approximation guarantee for PC RF switching.
These results are independent of almost all choices of system
parameters in massive MIMO systems ranging from the number
of transmit antennas, users, receive antennas, RF chains, sub-
carriers, type of channel model, and RF switching architecture
employed, thereby making the greedy algorithm an extremely
potent tool. We furthermore establish an equivalence between
transmit antenna selection for maximizing downlink capacity in
a MIMO broadcast channel (BC) and receive antenna selection
for a design of experiments problem in the dual uplink MIMO
multiple access channel (MAC), thereby revealing an interesting
link between the two problems.

Finally, we point out that we are, to the best of our knowl-
edge, the first to exploit the submodularity of the capacity based
criterion for transmit antenna selection in multi-user massive
MIMO systems to justify the use of the greedy algorithm as a
principled approximation algorithm rather than a heuristic. That
being said, such an approach has been previously considered in
the context of receive antenna selection with FF switching for
maximizing Shannon capacity in point-to-point MIMO systems
[27] in order to provide theoretical performance guarantees for
the greedy algorithm of [26]. However, the scenario the authors
of [27] considered requires having more receive antennas than
transmit antennas, which is not aligned with massive MIMO sys-
tems. Furthermore, in hindsight, while the submodularity of the
objective function is readily apparent in this single user setting,
this is not the case for our multi-user scenario, as it is necessary
to utilize the duality of the capacity regions of the downlink
MIMO BC and uplink MIMO MAC [28]–[30] followed by ap-
plying suitable algebraic manipulations to arrive at a formulation
with a similar form.2 Additionally, by utilizing the abstraction of
matroids, we are able to describe a far broader class of switching
architectures compared to the case of FF switching considered
in [27]. This in turn, allows us to demonstrate that the greedy
algorithm can yield provable approximation guarantees for this
larger class of selection problems as well.

The efficacy of the greedy algorithm is experimentally eval-
uated in a variety of massive MIMO settings under different RF
switching constraints. We use the convex relaxation approach
as a performance benchmark and utilize a simple first-order
method for improving its running time. Our experiments indi-
cate that the worst-case performance guarantees for the greedy
algorithm are very pessimistic; in practice near-optimal perfor-
mance is obtained. Furthermore, the subset of antennas selected
by the greedy algorithm can successfully capture a significant
fraction of the total downlink sum-rate capacity using very few
RF chains, even when selection is performed across multiple
sub-carriers under restrictive switching constraints. Relative to
the relaxation approach, the greedy algorithm also exhibits a far

1Here, e denotes Euler’s number.
2In fact, after reformulation, the resulting problem (17) with FF switching in

this paper and problem (2) of [27] are equivalent. Hence, in this case, the greedy
algorithm yields the same performance guarantees for both problems.
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superior performance-complexity trade-off, with running times
comparable to the coherence interval of massive MIMO chan-
nels. Additionally, when a ZFB is designed for the reduced
MIMO BC using the subset of antennas determined by the
greedy algorithm, we observe that the resulting performance
loss in terms of sum-rate is often minimal. Owing to its potent
combination of simplicity, theoretical performance guarantees
and impressive practical performance, we can reasonably claim
that the proposed two-step, greedy antenna selection followed
by ZFB approach now constitutes the state-of-the-art for trans-
mit antenna selection in multi-user massive MIMO systems and
paves the way for significant reduction in system complexity
far beyond what was previously achievable by employing the
approaches used in [18]–[20].

Relative to the conference version [1], which considered the
special case of antenna selection in multi-user massive MIMO
systems with a single receive antenna per user and FF RF switch-
ing constraints, the present journal version extends the results to
the most general case with multiple receive antennas per user,
PC RF switching, and multiple sub-carriers.

The rest of the paper is organized as follows. Section II out-
lines the system model while Section III describes the problem
formulation. A brief overview of submodular functions and ma-
troids is provided in Section IV, followed by establishing the
submodularity of the antenna selection criterion in Section V.
Section VI describes the greedy algorithm and its computa-
tional aspects. The case of antenna selection across multiple
sub-carriers is discussed in Section VII, while in Section VIII
we demonstrate how to improve the scalability of the convex
relaxation based approach. A set of comprehensive experiments
are carried out in Section IX, and conclusions are drawn in
Section X.

Throughout the paper, we adopt the following notation. Cap-
ital boldface is reserved for matrices, vectors are denoted by
small boldface, and scalars are represented in the normal face.
We denote the N−dimensional complex Euclidean space by
CN , while the N ×N identity matrix is represented as IN . Su-
perscript T is used to denote the transpose of a vector/matrix,
while H denotes Hermitian transpose. Calligraphic font is used
to denote finite sets. The notation [n] is used as shorthand for
the set {1, . . . , n}, while the set of natural numbers is indicated
by N. For a differentiable function f(.), its gradient is denoted
by ∇f(.). Finally, the expectation operator associated with a
random vector/variable is denoted as E{.}.

II. SYSTEM MODEL

Consider a downlink transmission scenario in a single-cell,
multi-user (MU)-MIMO system where a BS equipped withMT

transmit antennas simultaneously servesK users, each of whom
is equipped withMR ≥ 1 receive antennas. The massive MIMO
paradigm envisions a setting where a small number of users,
each with a few receive antennas, are served by a BS equipped
with a very large antenna array; i.e., we have MT >> KMR .
We make the assumption that the BS has already acquired perfect
channel state information (CSI) for all users. Let N denote the
number of available RF chains at the BS with KMR ≤ N ≤

MT . For a given subset S ⊆ [MT ] of |S| = N simultaneously
active antennas, the received signal yk ∈ CMR of user k can be
expressed as

yk =
√
ρH[S]

k x + nk ,∀ k ∈ [K] (1)

where ρ > 0 is the transmit power budget, and H[S]
k ∈ CMR ×N

is the MIMO channel sub-matrix obtained by selecting a
subset of N columns (indexed by S) from the kth user’s full
channel matrix Hk ∈ CMR ×MT , whose entries correspond to
quasi-static, flat-fading channel coefficients. Additionally, we
let H := [HH

1 , . . . ,H
H
K ]H denote the concatenated channel ma-

trix and let H[S] ∈ CKMR ×N represent its sub-matrix with
columns indexed by S. Finally, x ∈ CN is the transmit sig-
nal vector applied across the N selected antennas satisfying
the normalized transmit power constraint E{‖x‖22} ≤ 1, while
{nk}Kk=1 are complex, circularly symmetric, i.i.d. Gaussian
noise vectors at the receivers, with nk ∼ CN (0, IMR

).

III. PROBLEM FORMULATION

In the absence of antenna selection, the sum-rate capacity
of the downlink MIMO BC with a normalized transmit power
constraint is equal to the capacity of the dual uplink MIMO
(MAC subject to a unit transmit sum-power constraint [28]–
[30] and is given by

C(H) = max
{Qk }Kk = 1

log2 det
(
IMT

+ ρ
K∑
k=1

HH
k QkHk

)

s.t. Qk � 0,∀ k ∈ [K]

K∑
k=1

Trace(Qk ) ≤ 1

(2)

where {Qk}Kk=1 ∈ CMR ×MR denote uplink covariance matri-
ces to be determined. Note that (2) is a convex optimization
problem, which can be optimally solved, for example, using
the sum-power iterative waterfilling algorithm proposed in [31].
Thereafter, the optimal downlink covariance matrices can be de-
termined from {Qk}Kk=1 via the MAC to BC transformations de-
scribed in [30, Equations (8)–(10)]. The non-linear dirty-paper
coding (DPC) [32] technique is known to be the optimal capacity
attaining transmission strategy in this case.

When only a subset S of N < MT transmit antennas are
active at the BS, the capacity expression becomes a function of
the selected antennas and is given by

C(H[S]) = max
{Qk }Kk = 1

log2 det
(
IN + ρ

K∑
k=1

(H[S]
k )HQkH

[S]
k

)

s.t. Qk � 0,∀ k ∈ [K]

K∑
k=1

Trace(Qk ) ≤ 1 (3)
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Determining the capacity with antenna selection is tantamount
to solving the following optimization problem

C(H) = max
S,{Qk }Kk = 1

log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k )HQkH

[S]
k

)

s.t. Qk � 0,∀ k ∈ [K]

K∑
k=1

Trace(Qk ) ≤ 1, S ∈ I (4)

where I ⊆ 2[MT ] denotes the family of antenna subsets which
can be selected, and is determined by the type of RF switch-
ing architecture employed for antenna selection. For example,
when a FF RF switching matrix is utilized (i.e., each of the N
RF switches can connect to any one of the MT antennas), the
feasible set is described by the collection of subsets I = {S ⊆
[MT ] : |S| = N}. Alternatively, when a PC RF switching ma-
trix is used, the restricted connectivity partitions the antenna
array into a number of disjoint sub-arrays, with each sub-array
being served by a block of switches. To formalize this notion, let
us consider a PC switching architecture withN RF switches or-
ganized into B distinct switching blocks (with 1 ≤ B ≤ N ).
Let Nb denote the number of switches assigned to switch-
ing block b ∈ [B] such that

∑
b∈[B ] Nb = N . Each switching

block provides connections to a sub-array of antenna elements,
which partitions the array as [MT ] = ∪b∈[B ]Mb , whereMb de-
notes the antenna sub-array associated with the bth switching
block, |Mb | ≥ Nb ,

∑
b∈[B ] |Mb | = MT and Mb1 ∩Mb2 =

∅,∀ b1 �= b2 , b1 , b2 ∈ [B]. With Nb switches, each block b is
required to select a subset of antennas Sb ⊆Mb from each sub-
array such that |Sb | = Nb . The overall selection set S ⊆ [MT ]
obtained over B switching blocks can then be defined as
S := ∪b∈[B ]Sb . Since the sub-arrays {Mb}Bb=1 are disjoint, it
follows that the selected sets {Sb}Bb=1 are disjoint as well. Conse-
quently, we can equivalently express Sb = S ∩Mb ,∀ b ∈ [B].
The feasible set in this case can be described by the fam-
ily of subsets I = {S ⊆ [MT ] : |S ∩Mb | = Nb,∀ b ∈ [B]}.
Note that the number of switching blocks, B, the choice of
array partition {Mb}Bb=1 and the number of switches Nb as-
signed to each sub-array can be arbitrary. For a concrete ex-
ample, consider the case MT = 2N , MR = 1, B = N , and
|Mb | = MT /B = 2, Nb = N/B = 1,∀ b ∈ [B]. This reduces
to the special case of binary switching described in [19], where
the entire array is partitioned into N sub-arrays comprising 2
antennas each, and each of the N switches is connected to only
one of 2 antennas in each sub-array.

In contrast to (2), the additional antenna selection constraints
make (4) a challenging, mixed-integer optimization problem
since we must jointly design the covariance matrices {Qk}Kk=1
for all users and select the optimal subset of antennas, which
requires enumeration over a combinatorial number of subsets of
[MT ] in the worst case. As proposed in [18] for the special case
MR = 1, problem (4) can be partially simplified by opting to use
a predetermined set of covariance matrices {Qk}Kk=1 satisfying
the transmit sum-power constraint

∑K
k=1 Trace(Qk ) ≤ 1 and

then performing antenna selection. The resulting optimization

problem can be expressed as

C(H, {Qk}Kk=1)

= max
S∈I

log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k )HQkH

[S]
k

)
(5)

One possible choice of uplink covariance matrices is to use the
optimal solution of (2). In the high SNR regime, we can alter-
natively use the set of uniform power allocation matrices Qk =

1
KMR

IMR
,∀ k ∈ [K], as it corresponds to the asymptotically

optimal choice (i.e., achieves sum-rate capacity) under the
conditions MT ≥ KMR and the concatenated channel matrix
H := [HH

1 , . . . ,H
H
K ]H being full row rank [28, Theorem 3].

In this case, (5) corresponds to selecting the subset of antennas
which maximizes the fraction of the total downlink sum-rate
capacity attainable with the full set of active antennas.

Unfortunately, even this “simplification” step does not make
(5) any easier to solve. Note that for a given set of matrices
{Hk ,Qk}Kk=1 , computing the optimal antenna subset

S∗ = arg max
S∈I

log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k )HQkH

[S]
k

)
(6)

requires solving a subset selection problem. A simple combi-
natorial counting argument indicates that for the case of FF
switching, a total of |I| = (

MT

N

)
enumerations may possibly be

required, while the maximum number of such potential enumer-
ations in the PC switching case is |I| = ∏

b∈[B ]

(|Mb |
Nb

)
. These

intuitive arguments indicate that (5) is potentially NP–hard in
the worst case. As formally established in [33], this is indeed
the case.

From the previous discussion, it is clear that enumeration
over all possible feasible subsets becomes intractable even for
modest values ofMT andN , let alone for massive MIMO where
hundreds of antennas can be potentially deployed at the BS. In
order to deal with the combinatorial nature of the constraints,
prior work [18]–[20] has relied upon using convex relaxations of
the feasible set, which results in a convex programming problem
that is optimally solvable in polynomial-time [34]. Since the
solution of the relaxed problem is not guaranteed to be feasible
for (5) in general, a post-processing fractional rounding step is
performed to obtain a sub-optimal solution. While this approach
has been empirically observed to work well in certain settings,
overall, it suffers from the following drawbacks in general

1) Using general-purpose convex programming solvers to
solve the relaxed problem incurs worst-case complexity
O(M 3.5

T ). While this is a polynomial-time result in MT ,
for massive MIMO, whereMT could potentially be in the
order of hundreds, it is clear that this approach can be
very computationally very expensive. Ideally, we desire
an algorithmic approach whose complexity scales linearly
in MT .

2) More importantly, the sub-optimality of the solution ob-
tained by convex relaxation followed by rounding, relative
to the globally optimal value of (5) (which is NP–hard to
determine), cannot be theoretically quantified. Hence, it
is not possible to guarantee that this approach will yield



KONAR AND SIDIROPOULOS: SIMPLE AND EFFECTIVE APPROACH FOR TRANSMIT ANTENNA SELECTION IN MULTIUSER MASSIVE MIMO 4873

a high quality sub-optimal solution of (5) for all possi-
ble combinations of choices of matrices {Hk ,Qk}Kk=1 ,
number of transmit and receive antennas MT and MR

respectively, RF chains N and switching architectures I.
In the forthcoming sections, we demonstrate that by exploit-

ing the fact that (6) corresponds to a monotone submodular
maximization problem subject to matroid constraints, we can
use a simple greedy algorithm to obtain very powerful perfor-
mance guarantees for all instances of this NP–hard problem.
First, we provide a brief primer on submodular functions and
matroids.

IV. OVERVIEW OF SUBMODULARITY AND MATROIDS

Given a ground set of n objects V := {v1 , . . . , vn}, consider
the set-function f : 2V → R which assigns a real value to any
subset S ⊆ V .

Definition 1 (Submodularity): [22, p. 22] The set-function f
is said to be submodular if and only if, for all subsetsA,B ⊆ V ,
it holds that

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) (7)

If we define Δf (v|A) := f(A ∪ {v})− f(A) as the marginal
gain of the object v ∈ V with respect to (w.r.t.)A ⊆ V , then the
above definition can be equivalently restated as:

Definition 2: If f is submodular, then, for all A ⊆ B ⊆ V \
v, it holds that

Δf (v|A) ≥ Δf (v|B) (8)

That is, given a subset of objectsA, the marginal gain derived by
adding v to A does not increase when we add v to the superset
B. Hence, submodular functions exhibit a natural diminishing
returns property. If f satisfies (7)–(8) with equality, it is said to
be modular.

Definition 3 (Monotonicity): A set-function f is said to be
monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ V . Moreover, if
f is also submodular, then monotonicity is equivalent to the
condition Δf (v|V \ v) ≥ 0,∀ v ∈ V .

Additionally, every monotone submodular function can be
characterized by a quantity known as curvature, which measures
how “close” a submodular function is to being modular.

Definition 4 (Curvature): [35] The curvature cf ∈ [0, 1] of a
monotone submodular function f is defined as

cf = 1−min
v∈V

Δf (v|V \ v)
Δf (v|∅) (9)

For a modular function, we have cf = 0, whereas if Δf (v|V \
v) = 0,∀ v ∈ V , then cf = 1. The role played by curvature will
become apparent later on when we discuss algorithmic tech-
niques for obtaining approximate solutions for problems in-
volving maximization of monotone submodular functions.

Finally, we point out that maximizing a monotone submodular
function f(A) (whereA ⊆ V) without any constraints is a trivial
problem whose optimal solution is the ground setV . To make the
problem interesting, maximization is usually performed subject
to some constraints on A, which can often be described via a
matroid.

Definition 5 (Matroid): [23] A matroid is an ordered pair
(V, I) consisting of a finite ground set V and a collection of
subsets I of V called independent sets which satisfy the follow-
ing axioms

A1) ∅ ∈ I
A2) If B ∈ I and A ⊆ B, then A ∈ I
A3) If A,B ∈ I and |A| < |B|, then ∃ v ∈ B \ A such that

A ∪ {v} ∈ I
A matroid can be regarded as a generalization of the classical
notion of linear independence established in linear algebra. We
now provide two examples of matroids, which will be useful
later on.

Example 1 (Uniform Matroid): A matroid with independent
sets I = {A ⊆ V : |A| ≤ k} is called a uniform matroid and
satisfies axioms (A1)–(A3).

Example 2 (Partition Matroid): Consider the partition V =
∪mi=1 Gi where Gi ∩ Gj = ∅,∀ i �= j, i, j ∈ [m]. A matroid with
independent sets I = {A ⊆ V : |A ∩ Gi | ≤ ki,∀ i ∈ [m]} sat-
isfies axioms (A1)–(A3).

V. ANTENNA SELECTION AS MONOTONE SUBMODULAR

MAXIMIZATION OVER MATROIDS

In this section, we show that the objective function of
(6) is monotone submodular. First, for a given set of co-
variance matrices {Qk}Kk=1 which satisfy the transmit sum-
power constraint, we define the block diagonal matrix Q =
blkdiag(Q1 , . . . ,QK ) ∈ CKMR ×KMR and denote its matrix
square-root factor as Q1/2 . Given the concatenated channel
matrix H ∈ CKMR ×MT , let H[S] ∈ CKMR ×|S| represent the
sub-matrix obtained by selecting the column subset S ⊆ [MT ].
Next, we define the modified channel matrix

H̃ := Q1/2H (10)

from which it follows that we also have

H̃[S] = Q1/2H[S],∀S ⊆ [MT ] (11)

We also define the positive semidefinite Grammian matrix G̃ :=
H̃H H̃ and let G̃[S,S] denote the C|S|×|S| sub-matrix of G̃ with
row and column indices in S ⊆ [MT ]. The objective function
of the antenna selection problem (6) can then be equivalently
expressed as

f(S) = log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k )HQkH

[S]
k

)
(12a)

= log2 det
(
I|S| + ρ(H[S])HQH[S]

)
(12b)

= log2 det
(
I|S| + ρ(H̃[S])H H̃[S]

)
(12c)

= log2 det
(
IMT

[S,S] + ρG̃[S,S]
)

(12d)

where in the last step we have utilized the fact that we can
write, without loss of generality (w.l.o.g.), I|S| = IMT

[S,S] for
all subsets S ⊆ [MT ].

Proposition 1: The function f(S) is submodular.
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Proof: Note that f(S) is the log determinant of the C|S|×|S|

sub-matrix of the positive definite matrix Σ := IMT
+ ρG̃,

which is known to be a submodular function [36]–[38]. The
result essentially follows from the fact that differential entropy
[39] as a function of a subset of random variables is submodu-
lar. Applying this fact to the special case of Gaussian random
variables with distribution z ∼ CN (0,Σ) yields the desired
claim. �

Proposition 2: The function f(S) is monotone.
Proof: We are required to show

Δf (v|V \ v) = f(V)− f(V \ v)
= log2 det(Σ)− log2 det(Σ[V \ v,V \ v])
≥ 0,∀ v ∈ V

As mentioned in [40], this holds as a simple consequence of
Cauchy’s theorem of interlacing eigen-values [41, Theorem
4.3.17]. �

This concludes the proof of f(S) being monotone submod-
ular. We now turn our attention to the antenna selection con-
straints. Simple inspection reveals that in the FF switching
case, the feasible subsets I = {S ⊆ [MT ] : |S| ≤ N} corre-
spond to a uniform matroid ([MT ], I), whereas in the PC case,
the subsets I = {S ⊆ [MT ] : |S ∩Mb | ≤ Nb,∀ b ∈ [B]} de-
fine a partition matroid ([MT ], I).3 Hence, the transmit antenna
selection problem

S∗ = arg max
S∈I

f(S) (13)

corresponds to maximizing a monotone submodular function
subject to matroid constraints.

An Alternative Interpretation via Duality

We now provide an alternative interpretation of the transmit
antenna selection problem (13) in the downlink MIMO BC as a
design of experiments problem in the dual uplink MIMO MAC.
For simplicity of exposition, we consider the case of ρ = 1. In
the uplink MAC, the received signal v ∈ CMT at the BS is given
by

v =
K∑
k=1

HH
k uk + w = HHu + w (14)

where u = [uH1 , . . . ,u
H
K ]H ∈ CKMR is the vector of signals

transmitted by the users satisfying
∑K

k=1 E[‖uk‖22 ] ≤ 1, while
w ∼ CN (0, IMT

) is complex, circularly symmetric, Gaussian
noise at the BS.

Assuming that the distribution of each transmitted vector is
uk ∼ CN (0,Qk ),∀ k ∈ [K] such that

∑K
k=1 Trace(Qk ) ≤ 1,

and the set of vectors {uk}Kk=1 are mutually independent, it
follows that u ∼ CN (0,Q). We now consider the problem of
estimating u from the vector of noisy, linear measurements v
available at the BS. The maximum aposteriori (MAP) estimator

3One may naturally ask why the inequalities in both definitions of I have been
replaced with equalities. In this particular case, the equalities can be relaxed to
inequalities w.l.o.g. since f (S) is a monotone function.

of the transmitted signal u is given by

û =
(
Q−1 + HHH

)−1

Hv (15)

If we are restricted to only choose a subset S ∈ I ⊆ 2MT of
measurements from v (i.e., receive antennas at the BS), where
([MT ], I) forms a matroid system, the MAP estimator as a
function of S can be expressed as

û(S) =
(
Q−1 + H[S](H[S])H

)−1

H[S]v[S] (16)

with estimation error covariance matrix

E(S) =
(
Q−1 + H[S](H[S])H

)−1

(17)

One approach for selecting a subset of measurements which
yields a high quality estimator is to minimize the volume of the
error covariance matrix E(S) subject to the matroid constraints
S ∈ I imposed on the receive antennas at the BS. This can be
expressed in the form of the following problem

S∗ = arg max
S∈I

log2 det
(
Q−1 + H[S](H[S])H

)
(18)

It has been established [33] that the objective function of (18)
is monotone submodular. Additionally, problem (18) is actually
(13) in disguise. This can be seen via the following series of
equivalent transformations

max
S∈I

log2 det
(
Q−1 + H[S](H[S])H

)
(19a)

⇔ max
S∈I

log2 det
(
Q−1(IKMR

+ QH[S](H[S])H )
)

(19b)

⇔ max
S∈I

log2 det
(
IKMR

+ QH[S](H[S])H
)

(19c)

⇔ max
S∈I

log2 det
(
IMT

+ (H[S])HQH[S]
)

(19d)

where in the last step we have made use of Sylvester’s Determi-
nant theorem [41], which states that

det(I + AB) = det(I + BA) (20)

Hence, the experiment design problem (18) of choosing the opti-
mal subset of receive antennas for minimizing the volume of the
error covariance matrix of the MAP estimator of the transmitted
signal in the uplink MAC is equivalent to the transmit antenna
selection problem (13) of maximizing the sum-rate capacity in
the downlink BC.

VI. GREED IS GOOD

We now describe a simple greedy algorithm for obtaining high
quality approximate solutions of (13) for both FF and PC switch-
ing. In the case of FF switching (i.e., submodular maximization
over a uniform matroid), the algorithm starts with the empty set
S0 = ∅ and incrementally constructs a solution in the following
fashion. At iteration i ∈ [N ], the element v /∈ Si−1 maximizing
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the marginal gain w.r.t. the set Si−1 is added according to the
following update rule (with ties broken arbitrarily).

Si = Si−1 ∪ {argmax
v /∈Si−1

Δf (v|Si−1)},∀ i ∈ [N ] (21)

Note that the greedy algorithm requiresO(NMT ) evaluations of
the objective function f(.). Regarding the quality of the solution
set Sgr determined by the greedy algorithm, Nemhauser et al.
[24] proved the following celebrated result.

Theorem 1: [24] Maximizing a monotone submodular func-
tion over a uniform matroid via the greedy algorithm guaran-
tees a (1− 1/e)-factor approximation for all instances (13).
That is, if S∗ denotes the optimal set, then f(S∗) ≥ f(Sgr) ≥
(1− 1/e)f(S∗).

Note that these results are independent of the choice of chan-
nels H, the number of antennas MT ,MR , users K, and RF
chains N . The advantage of exploiting submodularity is evi-
dent, as it allows us to obtain a constant-factor approximation
for all possible instances of the NP–hard problem (13) for the
case of the FF switching by only using a simple greedy al-
gorithm. Clearly, this approach is more principled compared
to convex relaxation. Moreover, it was shown in [42] that ob-
taining a better worst-case approximation guarantee would re-
quire one to evaluate f on an exponential number of subsets.
Hence, in this case, the greedy algorithm is also provably an op-
timal polynomial-time approximation algorithm for the given
problem.

On the other hand, for the PC switching case where the feasi-
ble subsets constitute a partition matroid, the greedy algorithm
again starts from the empty set S0 = ∅ and proceeds as follows

Si = Si−1 ∪ {argmax
v /∈Si−1 ,
Si−1 ∪{v}∈I

Δf (v|Si−1)},∀ i ∈ [N ] (22)

until we cannot add an element v for which Si−1 ∪ {v} ∈ I.
Regarding the performance of the greedy algorithm in this case,
the following result holds.

Theorem 2: [25] For monotone submodular maximization
over a partition matroid, the greedy algorithm yields a 1/2-
factor approximation for all instances of (13).4 That is, f(S∗) ≥
f(Sgr) ≥ 0.5f(S∗).

Again, the result is independent of the choice of the parame-
ters H,MT ,MR,K,N while additionally also being indepen-
dent of the type of PC switching architecture used. Hence, by
using the greedy algorithm, we are able to obtain a constant-
factor approximation guarantee for all PC switching architec-
tures, which is a trait not shared by the convex relaxation ap-
proach. We point out that the greedy algorithm is not the optimal
polynomial-time approximation algorithm in the present case of
maximization over a non-uniform matroid. In [43], Calinescu et
al. proposed a polynomial-time algorithm for the given problem
which guarantees a (1− 1/e)-factor approximation. However,
the improved performance of the algorithm comes at the expense
of being unsuited for practical implementation,5 for which rea-
son, we choose to use the greedy algorithm instead. As we

4In fact, this result holds for maximization over any non-uniform matroid.
5More specifically, the algorithm requires solving a continuous nonlinear re-

laxation of problem (17). This necessitates computing a continuous extension

demonstrate later on in this section, in addition to its favorable
theoretical approximation guarantees, the greedy algorithm also
enjoys low run-time complexity.

We further remark that the curvature cf of f can be used
to refine the performance analysis of the greedy algorithm and
obtain improved approximation guarantees. When maximiza-
tion is performed subject to a uniform matroid constraint,
it can be shown [35] that the greedy algorithm provides a
1
cf

(1− e−cf )-factor approximation guarantee. Note that for

cf = 1, we obtain the worst-case (1− 1/e)-factor, whereas for
cf → 0, we have limcf→0

1
cf

(1− e−cf ) = 1, which is the opti-
mal factor (i.e., the greedy algorithm returns the optimal solution
in this case). On the other hand, for maximization over a parti-
tion matroid, the approximation factor for the greedy algorithm
can be improved to 1

1+cf
[35]. Again, the performance of the

greedy algorithm in terms of curvature is sub-optimal amongst
the class of polynomial-time algorithms. In [40], Sviridenko et
al. introduce a pair of polynomial-time algorithms which guar-
antee a (1− cf /e)-factor approximation for submodular maxi-
mization subject to an arbitrary matroid constraint, which is an
improvement over the curvature based guarantees of the greedy
algorithm ∀ c ∈ (0, 1). The drawback of these algorithms is that
they are far more computationally involved compared to the
greedy algorithm. Furthermore, our experiments indicate that
the greedy algorithm returns a near-optimal solution in most
instances, for which reason it remains the algorithm of choice
in this paper.

We now discuss the computational complexity of the greedy
algorithm. Note that at each iteration i ∈ [N ], we are required
to compute O(MT ) determinants of a C|Si |×|Si | matrix, which
requires O(|Si |3) computations in general. This results in over-
all complexityO(N 4MT ), which can be very unfavorable since
N = O(MT ) potentially. However, this can be avoided via a
simple algebraic manipulation. Let us define the set

S(v )
i := Si−1 ∪ {v},∀ v /∈ Si−1 ,∀ i ∈ [N ] (23)

Then, as a consequence of Sylvester’s Determinant theorem, we
obtain

f(S(v )
i ) = log2 det

(
I|Si | + ρ(H̃[S( v )

i ])H H̃[S( v )
i ]

)
(24a)

= log2 det
(
IKMR

+ ρH̃[S( v )
i ](H̃[S( v )

i ])H
)

(24b)

Note that in this case, the complexity incurred in evaluat-
ing the determinant is O(M 3

RK
3), which results in a substan-

tially improved complexity bound of O(NMTM
3
RK

3) since
KMR ≤ N and KMR = o(MT ) in massive MIMO. Further-
more, as pointed out in [44], the incremental nature of the greedy
algorithm can be exploited to further reduce complexity in the
following manner.

H̃[S( v )
i ](H̃[S( v )

i ])H = H̃[Si−1 ](H̃[Si−1 ])H + h̃[v ](h̃[v ])H (25)

of the objective function and its gradient at each iteration, which may require
evaluating an exponential sum of subsets of [MT ] in the worst case. While
random sampling can be used to accurately approximate this sum using a poly-
nomial number of subsets, the sample size may still be too large for practical
implementation.



4876 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 18, SEPTEMBER 15, 2018

where h̃[v ] is the column of H̃ indexed by v. Define

M[Si−1 ] := IKMR
+ ρH̃[Si−1 ](H̃[Si−1 ])H (26)

Note that M[Si−1 ] is always invertible and is available at the start
of iteration i. We can now write (24b) as

f(S(v )
i ) = log2 det

(
M[Si−1 ] + ρh̃[v ](h̃[v ])H

)
(27a)

= log2(1 + ρ(h̃[v ])H (M[Si−1 ])−1 h̃[v ]) (27b)

+ log2 det(M[Si−1 ]) (27c)

where we have used the Matrix Determinant Lemma [45] to
arrive at the second expression. Hence, computing the marginal
gain of v /∈ Si−1 w.r.t. Si−1 requires us to simply evalu-
ate the quantity h̃[v ])H (M[Si−1 ])−1 h̃[v ] . Assuming (M[Si−1 ])−1

is available at the start of iteration i ∈ [N ],6 evaluating this
quadratic form requires O(M 2

RK
2) operations, thus resulting

in O(MTM
2
RK

2) operations to identify the optimal element
v∗. Computation of (M[Si−1 ])−1 for use in the next iteration can
be accomplished effectively via use of the Sherman-Morrison-
Woodbury Formula [41]

(M[Si ])−1 = (M[Si−1 ])−1

− ρ(M[Si−1 ])−1 h̃[v ∗](h̃[v ∗])H (M[Si−1 ])−1

1 + ρ(h̃[v ∗])H (M[Si−1 ])−1 h̃[v ∗]
(28)

which only entailsO(M 2
RK

2) operations relative to standard in-
version which requires O(M 3

RK
3) operations. Ultimately, this

translates into an overall runtime of O(MTNM
2
RK

2) for the
greedy algorithm, which is linear in MT (with the other param-
eters fixed). Note that the running-time can still be O(M 2

T ) if
the number of RF chains N = O(MT ).

In order to further improve the run-time and efficiently tackle
larger-scale problems (even when N = O(MT )), we utilize an
accelerated version of the standard greedy algorithm originally
proposed in [46]. Note that at each iteration i ∈ [N ] of the stan-
dard greedy algorithm, determining the element v∗ with the
maximum marginal gain Δf (v∗|Si−1) requires O(MT ) evalua-

tions of f(S(v )
i ). However, as a simple consequence of submod-

ularity, the marginal gains of any fixed element v ∈ [MT ] are
monotonically non-increasing across iterations of the greedy
algorithm, i.e., Δf (v|Si) ≥ Δf (v|Sj ),∀ i ≤ j ∈ [N ]. The ac-
celerated greedy algorithm exploits this fact by maintaining a
list {g(v)}v /∈Si−1 of the marginal gains of the unselected ele-
ments at each iteration sorted in descending order. The initial
list is obtained by performing one step of the standard greedy
algorithm. At the beginning of every subsequent iteration, the
algorithm extracts the maximal element from the list and per-
forms the update g(v)← Δf (v|Si−1). After the update, if it so
happens that g(v) ≥ g(v′),∀ v′ /∈ Si−1 ∪ {v}, then by virtue of
submodularity, it holds that Δf (v|Si−1) ≥ Δf (v′|Si−1) for all
such v′. Consequently, the greedy algorithm has identified v∗

without having to evaluate Δf (v′|Si−1) for a potentially large
number of elements v′. If the above statement does not hold,

6Note that (M0 )−1 = IKMR

the list is resorted and the maximal element is queried again,
until v∗ is identified. While the exact runtime of the accelerated
greedy algorithm is currently unknown, it has been empirically
observed to be much faster relative to the standard greedy algo-
rithm.

VII. THE CASE OF MULTIPLE SUB-CARRIERS

In this section, we extend the results of the previous section
to the case of performing antenna selection at the BS across
multiple sub-carriers. Given a single-cell MU-MIMO OFDM
system with L downlink sub-carriers, K users, and a subset of
active antennas S ⊆ [MT ] at the BS, the downlink channels can
be described as

yk (�) =
√
ρH[S]

k (�)x(�) + nk (�),∀ (�, k) ∈ [L]× [K] (29)

where for a given sub-carrier � ∈ [L], H[S]
k (�),yk (�), x(�) and

nk (�) respectively denote the downlink MIMO channel sub-
matrix for user k obtained by selecting the subset of transmit an-
tennas S, the MIMO channel output at the kth user, the transmit
signal applied across S, and i.i.d. circularly symmetric Gaussian
noise. In order to perform antenna selection across multiple sub-
carriers, we employ a generalization of the following capacity
based criterion proposed in [18]

max
S∈I

L∑
�=1

log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k (�))HQk (�)H

[S]
k (�)

)

(30)
where the uplink covariance matrices {Qk (�)}K,Lk=1,�=1 are again
fixed apriori. Note that each function

f�(S) := log2 det
(
I|S| + ρ

K∑
k=1

(H[S]
k (�))HQk (�)H

[S]
k (�)

)
,

∀ � ∈ [L] (31)

is monotone submodular by virtue of Propositions 1 and 2.
Hence, problem (30) can be expressed as

max
S∈I

{
F (S) :=

L∑
�=1

f�(S)
}

(32)

which corresponds to maximizing a sum of monotone submod-
ular functions subject to matroid constraints. Since both sub-
modularity and monotonicity are preserved under non-negative
sums, problem (32) is equivalent to maximizing a monotone
submodular function over the independent sets of a matroid
([MT ], I). Hence, the greedy algorithm can again be applied
to (32) to obtain solutions with constant-factor approximation
guarantees for all instances of (32) irrespective of the number of
sub-carriersL and other aforementioned parameters; i.e., for the
case of FF switching, we obtain a (1− 1/e)-factor approxima-
tion guarantee whereas for PC switching, we obtain a 1/2-factor
guarantee.

VIII. AN EFFICIENT ALGORITHM FOR CONVEX RELAXATION

In order to benchmark the performance of the greedy al-
gorithms, we adopt the convex relaxation based heuristic
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originally proposed in [18] for obtaining approximate solu-
tions of (32). The first step in this approach is to relax the
combinatorial selection constraints to obtain the following op-
timization problem

max
s∈RM T

{
F (s) :=

L∑
�=1

log2 det(IKMR
+ ρH̃(�)diag(s)H̃(�)H )

}

(33a)

s.t. s ∈ P := conv(1S | S ∈ I) (33b)

where in the case of FF switching, the feasible set is explicitly
defined as

P := {s ∈ RMT | s ∈ [0, 1]MT ,1T s ≤ N} (34)

while for PC switching, for a given partition of the antenna-array
into B sub-arrays, we have

P :=
{
s ∈ RMT | s ∈ [0, 1]MT ,

∑
v∈Mb

s(v) ≤ Nb,∀ b ∈ [B]
}

(35)
Note that (33) corresponds to maximizing a concave function
over a convex polytope, and hence, is a convex optimization
problem which is optimally solvable in polynomial-time. How-
ever, instead of resorting to general-purpose convex program-
ming solvers which incur O(M 3.5

T ) complexity in the worst-
case, we propose to use the Frank-Wolfe (FW) algorithm [47],
[48], which is far more computationally efficient for large-scale
instances. The algorithm is iterative in nature, with updates of
the form

rk = arg max
s∈P
∇F (sk )T s (36a)

sk+1 = βkrk + (1− βk )sk ,∀ k ∈ N (36b)

where {βk}k∈N is a step-size sequence. By selecting the
step-size rule βk = 2/(k + 2),∀ k ∈ N, the algorithm requires
O(1/ε) iterations to guarantee convergence to a solution which
is ε-sub-optimal w.r.t. the optimal objective value [48].

At each step of the FW algorithm, we are required to compute
the gradient gk := ∇F (sk ) which can be evaluated using matrix
calculus [45] as follows

gk (m) = ρ

L∑
�=1

(
h̃m (�)H (IKMR

+ ρH̃(�)diag(s(k))H̃(�)H )−1

h̃m (�)
)
,∀m ∈ [MT ] (37)

where h̃m (�) corresponds to the mth column of the �th con-
catenated channel matrix H̃(�). Furthermore, we point out that
the linear maximization problem (36a) over the polytope P
always admits a closed form solution. For the case of FF
switching, this is accomplished by first determining the index
set S of the N largest components of gk followed by setting
r[S]
k = 1 and the remaining elements to be zero. The same prin-

ciple also applies to PC switching, where for each sub-array
Mb we determine the index of the |Sb | largest components
of g[Mb ]

k , and then set the corresponding elements of r[Mb ]
k to

one and the rest to zero. Note that in both cases, the solution
of (36a) is an extreme point of P , which corresponds to se-
lecting a subset of antennas which satisfy the given selection
constraints. The next iterate sk+1 is then obtained by perform-
ing a convex combination with the past iterate. The per-iteration
complexity is dominated by the cost of forming gk , which is
O(LMT K

2M 2
R (KMR + 1)), while the cost of computing the

maximization step (36a) is at most O(MTN). This results in
overall complexityO(MT

ε (LK2M 2
R (KMR + 1) +N)), which

scales only linearly with the number of transmit antennasMT . A
post-processing rounding step is then performed on the solution
returned by the algorithm to obtain the set of antennas SFW .

We remark that there are no known theoretical guarantees
regarding the sub-optimality of the set SFW in contrast to Sgr .
However, the FW algorithm can be interpreted as a continuous
greedy algorithm, as it selects a subset of antennas that maxi-
mizes the linear objective (36a) at each iteration, and hence, the
solution computed by it can still serve as a reasonable baseline
for comparison.

IX. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the viability of our outlined antenna selection approach. We
performed all our experiments on a Linux desktop with Intel
i7 cores and 16 GB of RAM and averaged our results over 500
Monte-Carlo channel realizations. First, we carried out a prelim-
inary experiment where a BS equipped with MT = 20 transmit
antennas serves K = 3 single receive antenna users in a rich
scattering environment where the downlink channels are mod-
eled using Rayleigh fading. A FF RF switching architecture is
used at the BS for selecting antennas with a transmit power bud-
get of ρ = −2 dB. Due to the modest size of the problem, we can
afford to run exhaustive search in this case to compute the opti-
mal solution of (13) and use it as a performance benchmark. Note
that in the presence of Rayleigh fading, the average power of
the channel coefficients is the same across all transmit antennas
and users, and thus, even random antenna selection is expected
to work well in this setting. For a given realization of H, we
first compute the optimal uplink covariance matrices by solving
(2). Since MR = 1, this simply entails computing a vector of
user power allocations, and can be efficiently computed using
the FW algorithm. Although we do not explicitly outline the
details, the algorithm proceeds in a manner very similar to the
one described in Section VIII; the main difference being that
the constraints are now described by the K−dimensional prob-
ability simplex. We initialize FW from the center of the simplex
and use a relative tolerance of ε = 1e−4 w.r.t. the objective func-
tion for termination. Thereafter, we use the greedy algorithm,
the convex relaxation approach using FW, and random selection
to obtain approximate solutions for (13). We varied the number
of available RF chainsN from 3 to 15 and compared the perfor-
mance of both approaches in terms of spectral efficiency against
the optimal solution of (13) obtained via exhaustive search. Fur-
thermore, for comparison, we also computed the optimal solu-
tion of (4); i.e., the problem of joint antenna selection and power
allocation via exhaustive enumeration over all possible antenna
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Fig. 1. Spectral Efficiency vs number of RF chains N for MT = 20 BS
antennas with fully flexible RF switching in presence of Rayleigh fading, ρ =
−2 dB, K = 3 users with MR = 1 receive antenna.

TABLE I
WORST-CASE APPROXIMATION QUALITY OF OBTAINED SOLUTIONS (IN %)

subsets and solving a power allocation problem of the form (3)
for each subset of selected antennas. The results are depicted in
Fig. 1 while the worst-case approximation quality of solutions
obtained via random selection, the greedy and FW algorithms
are presented in Table I. It is clear that the greedy and FW algo-
rithms exhibit near-optimal performance relative to exhaustive
search in all cases in contrast to random selection, which can
perform very poorly with few RF chains. Note that the quality of
the solution determined by the greedy algorithm is significantly
better than the worst-case (1− 1/e) lower bound. We addi-
tionally computed the improved 1

cf
(1− e−cf ) curvature-based

approximation factor by using the curvature bound mentioned
in [40] and by explicitly computing cf via (9). However, the best
approximation factor we obtained was only 0.685 (on average),
which is still very pessimistic compared to what we observe
in practice. It is also worth pointing out that in this particular
case (with independent Rayleigh fading), the solutions of (13)
obtained via exhaustive search, the greedy and FW algorithms
turn out to be near-optimal for the joint selection and power
allocation problem (4) as well.

Having demonstrated the ability of the greedy algorithm to
compute very high quality solutions for the antenna selection
problem, we now turn to the question of whether this translates
into attaining a significant fraction of the total sum-rate capacity
in the massive MIMO regime. We consider a setup with MT =
144 antennas at the BS with FF switching, ρ = 0 dB, and K =
12 single receive antenna users. For determining the downlink
channels {hHk }Kk=1 , we use the model [49]

hHk =
√
MT

Lk

Lk∑
l=1

α
(l)
k at(φ

(l)
k )H , ∀ k ∈ [K] (38)

Fig. 2. Fraction of downlink sum-rate capacity vs fraction of active BS anten-
nas for MT = 144 BS antennas with FF RF switching, ρ = 10 dB, K = 12
users with MR = 1 receive antenna.

where Lk ∼ U{5, 6, . . . , 15} is the number of scattering paths
between the BS and the kth user that is modeled as a uniform
random variable with non-zero support on the set {5, . . . , 15},
α

(l)
k ∼ CN (0, 1) is the complex gain of the lth path between

the BS and the kth user, at(.) is the array response vector at the
transmitter, andφ(l)

k ∼ U [−π/2, π/2] denotes the azimuth angle
of departure (AoD) of the lth path for the kth user. Assuming
the BS is equipped with a uniform linear array (ULA), we have

at(φ) =
1√
MT

[1, ejkd sin(φ) , . . . , ejkd(M−1) sin(φ) ]T (39)

where k = 2π/λ, λ is the carrier wavelength and d = λ/2 is
the spacing between antenna elements. For each realization of
H, we again computed the optimal power allocation using FW
as described in the previous paragraph. The result was used to
determine the sum-rate downlink capacity using the full set of
antennas. Next, we ran the greedy algorithm on (13) using a
fixed number of RF chains and computed the resulting sum-
rate with the selected subset of antennas. Then, we removed
the inactive antennas and used one more step of FW to deter-
mine the optimal user power allocation for the reduced MIMO
MAC channel. By duality of the MAC and BC, the resulting
sum-rate is also what is theoretically achievable using DPC at
the BS. Owing to the impracticality of DPC, we also used the
selected subset of antennas to design a zero-forcing beamformer
for the reduced MIMO BC as outlined in Appendix A. We re-
peated this over varying numbers of RF chains ranging from
16 to 136. The obtained results are shown in Fig. 2. It can be
seen that even with only 11% of the antennas activated, the
greedy algorithm captures almost 60% of the total downlink
capacity on average. Furthermore, due to the monotonicity and
submodularity of the objective function of (13), the property of
diminishing returns is evident; i.e., the marginal gains in sum-
rates decreases as more antennas are activated. Overall, this
enables us to capture a significant fraction of the total downlink
capacity using only a small subset of antennas determined by
the greedy algorithm, which is very efficient in practice. We
also note that the DPC rate obtained by performing user power
re-allocation on the reduced MIMO BC is negligible in terms
of improvement over the fraction of the DPC rate of the MIMO
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BC with all antennas activated attained by the greedy algorithm.
While we could combine the greedy antenna selection and power
allocation steps within an alternating optimization formulation
framework to obtain approximate solutions for (4), due to the
tangible lack of improvement in the objective function, we do
not pursue this approach further. Finally, it is evident that using
ZFB on the subset of antennas selected by the greedy algorithm
incurs minimal performance loss relative to using DPC, thus
providing empirical justification for our usage of the two-step
greedy submodular selection followed by ZFB approach. In-
deed, ZFB with greedy antenna selection captures 70% of the
total sum-rate with only a fourth of the total antennas activated.

We now extend our experiments to the case where MR > 1
and a RF switching matrix with partial connectivity is employed
at the BS. We employ a generalization of the downlink channel
model in (38) to the multiple receive antenna case, where each
channel matrix is described as

Hk =
√
MTMR

Lk

Lk∑
l=1

α
(l)
k ark (ψ

(l)
k )at(φ

(l)
k )H , ∀ k ∈ [K]

(40)
where in addition to the previously defined quantities, ark (.)
denotes the array response vector at the kth receiver, and ψ(l)

k ∼
U [−π/2, π/2] denotes the azimuth angle of arrival (AoA) of
the lth path for the kth user. Here we assume that each user is
equipped with a ULA as well. For our experiments, we set the
uplink covariance matrices to be Qk = 1

KMR
IKMR

,∀ k ∈ [K],
which, as mentioned previously, is a good choice in the high
SNR regime; we avoid using the iterative waterfilling algorithm
described in [31] as it is computationally cumbersome. In our
first experiment, we consider a scenario with MT = 128 BS
antennas, K = 8 users with MR = 2 antennas each, and ρ =
20 dB. We employ a PC switching network at the BS which
partitions the antenna array intoB = 8 disjoint sub-arrays of 16
antennas each. For a given number of RF chains, we assign an
equal number to each sub-array and run the greedy algorithm to
determine the subset of antennas. Thereafter, we apply ZFB on
the selected antenna subset both with and without coordination
amongst the receive antennas of each user. The total number
of RF chains is increased from 24 to 112 in increments of 8
for each realization of H, and the results averaged over 500
channel realizations are depicted in Fig. 3, where the fraction of
total downlink capacity is plotted as a function of the number
of active antennas per sub-array. It is evident that the greedy
algorithm again produces high quality solutions, attaining 80%
of the total capacity on average with only 4 active antennas per
sub-array (i.e., 32 out of 128 total antennas). Additionally, both
zero-forcing approaches perform very well with the selected
antennas, with only modest performance losses. As expected,
ZFB without receive antenna coordination (depicted in solid
blue), is the slightly inferior of the two approaches. However,
even this approach attains excess of 75% of the total capacity
with only 5 active antennas per sub-array (or approximately
31% of the total antennas).

We also performed a similar experiment in a more challeng-
ing scenario with MT = 256 BS antennas, K = 16 users with
MR = 4 antennas each, and ρ = 20 dB. The PC switching net-

Fig. 3. Fraction of downlink sum-rate capacity vs number of active BS an-
tennas per sub-array for MT = 128 BS antennas with PC RF switching using
B = 8 sub-arrays of equal size, ρ = 20 dB,K = 8 users withMR = 2 receive
antennas.

Fig. 4. Fraction of downlink sum-rate capacity vs number of active BS an-
tennas per sub-array for MT = 256 BS antennas with PC RF switching using
B = 16 sub-arrays of equal size, ρ = 20 dB, K = 16 users with MR = 4
receive antennas.

work at the BS partitions the antenna array into B = 16 dis-
joint sub-arrays of 16 antennas each. The averaged results are
depicted in Fig. 4, with the greedy algorithm exhibiting similar
performance as the previous experiment. However, the perfor-
mance of ZFB without receive antenna coordination is decidedly
more inferior in this case due to the larger number of receive
antennas per user; i.e., the payoff in employing coordination
is more significant here. For example, attaining 70% of the to-
tal capacity using ZFB with coordination requires activating
8 BS antennas per sub-array (or 50% of the total antennas)
while achieving the same without coordination requires activat-
ing 75% of the total antennas.

We now consider the case of multiple sub-carriers with PC
switching, which is arguably the most challenging case. Addi-
tionally, we also add the comparison with the convex relaxation
heuristic based on the FW algorithm described in Section VIII.
First, we consider a scenario with MT = 192, MR = 1, K =
24, L = 64 downlink sub-carriers and a PC switching archi-
tecture with B = 24 sub-arrays of 8 antennas each, N = 48
RF chains, with 2 active antennas per sub-array; i.e., only a
fourth of the antennas can be activated in total and also per sub-
array. The channel model (38) is used to generate the downlink
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Fig. 5. Spectral efficiency/sub-carrier vs ρ for MT = 192 BS antennas with
PC RF switching using B = 24 sub-arrays with 8 antennas each, 2 active
antennas/sub-array, L = 64 sub-carriers, K = 24 users with MR = 1 receive
antenna.

TABLE II
FRACTION OF TOTAL DOWNLINK CAPACITY ATTAINED WITH 3 ACTIVE

ANTENNAS/SUB-ARRAY

channels. We first compute the optimal user power allocation
per sub-carrier. Next, antenna selection across all sub-carriers
is performed using the FW based relaxation heuristic, which
is run for a maximum of 1000 iterations or until it achieves
convergence w.r.t. the objective function, as measured by a rel-
ative tolerance factor of ε = 1e−5 . We also modify the greedy
algorithm by utilizing lazy evaluations to improve its running
time. Finally, ZFB is applied on the selected subset of antennas
to compute the sum-rate per sub-carrier. We depict the average
sum-rate per sub-carrier in Fig. 5 as a function of the trans-
mit power budget ρ. Surprisingly, the FW based relaxation plus
rounding heuristic works just as well as the greedy algorithm
in terms of its performance relative to the sum-rate capacity
achievable with all antennas activated. However, the greedy al-
gorithm with lazy evaluations is significantly faster, with an
average execution time of just 3 milli-secs compared to 2 secs
for FW. Hence, we obtain a speed-up factor of almost 700%
by using the greedy algorithm. We note that when the transmit
power budget is very small, then the stringency of the switching
constraints and the fact that selection is performed across sub-
carriers results in greedy selection plus ZFB attaining only 25%
of the total sum-rate capacity. Considering that only a fourth of
the antennas are active anyways, even in this very adversarial
setting, the performance is still satisfactory. By increasing the
transmit power budget, the performance markedly improves. For
ρ = 10 dB, we can attain excess of 50% of the total capacity on
average, while this figure improves to 70% for ρ = 25 dB. We
also performed additional experiments where we increased the
number of antennas which can be activated per sub-array (i.e.,
we increased the number of RF chains) while keeping the other
parameters fixed. The results are reported in Tables II and III,
from which it is evident that the activating more antennas results
in attaining higher sum rates at lower transmit power.

TABLE III
FRACTION OF TOTAL DOWNLINK CAPACITY ATTAINED WITH 4 ACTIVE

ANTENNAS/SUB-ARRAY

Fig. 6. Fraction of downlink sum-rate capacity attained/sub-carrier and wall-
times vs number of BS antennas using NRF = 32 RF chains in a PC RF
switching network with B = 32 sub-arrays of equal size, ρ = 20 dB, L = 32
sub-carriers, K = 12 users with MR = 2 receive antennas.

In our last experiment, we test the performance of FW and
lazy greedy in another challenging scenario whereK = 12 users
with MR = 2 antennas are served by a BS with NRF = 32 RF
chains and L = 32 sub-carriers. We set ρ = 20 dB and vary the
number of BS antennas from MT = 64 to 512. A PC switch-
ing network is employed which partitions the entire array into
B = 32 sub-arrays of equal size; i.e., only 1 antenna can be
activated per sub-array. For MT = 64, our setup exactly corre-
sponds to the case of binary switching described in [19]. We
depict the performance in terms of downlink capacity attained
per sub-carrier and timing in Fig. 6(a) and 6(b) respectively. It
can be observed that FW is marginally better than lazy greedy
in terms of sum rate; however, in terms of running time, the
greedy algorithm has a very significant advantage. The speed-
up obtained varies from 250% for MT = 64 and increases to
2000% for MT = 512. Clearly, lazy greedy exhibits a vastly
superior performance-complexity trade-off compared to FW.
While greedy selection performed on the entire MIMO BC with
DPC exhibits very favorable performance in terms of sum-rate
attained versus fraction of active antennas, designing a ZFB
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with the selected antennas for the reduced MIMO BC results in
a fairly substantial drop in sum-rate. Yet, even with only 6.25%
of the total antennas active (i.e.,MT = 512), this scheme attains
45% (42%) of the total capacity with (without) receive antenna
coordination, which is still impressive.

X. CONCLUSION

We demonstrated that the NP–hard problem of maximizing
downlink sum-rate capacity in a multi-user massive MIMO sys-
tem with fixed user power allocation subject to FF and PC RF
switching constraints on the selected transmit antennas corre-
sponds to a monotone submodular maximization problem over
the independent sets of a matroid. In contrast to convex re-
laxation based approaches, the benefit of viewing the problem
through the lens of submodularity is that a simple greedy algo-
rithm can be used to guarantee constant-factor approximation
for all problem instances, independent of a large number of sys-
tem parameters in massive MIMO. Simulations revealed that
not only does the greedy algorithm return a near-optimal so-
lution in practice, but it can also capture a significant fraction
of the total downlink sum-rate capacity at far lower complexity
compared to convex relaxation. Furthermore, when a ZFB is
designed using the antenna subset obtained via greedy selec-
tion, the resulting performance loss in terms of sum-rate was
observed to be modest. This two step combination of greedy an-
tenna selection followed by applying a ZFB was demonstrated
to work well even when selection is performed across multiple
sub-carriers under restrictive switching constraints. The overall
approach is well aligned with the vision of massive MIMO, as
it uses simple signal processing techniques at the BS to attain
favorable trade-offs between performance and hardware effi-
ciency. Hence, it has considerable potential for being employed
in practice for reducing the complexity of implementing massive
MIMO systems.

APPENDIX A
ZERO-FORCING BEAMFORMER DESIGN

As the transmit antenna selection schemes outlined in the
paper utilize the downlink sum-rate capacity of the MIMO BC
channel as the selection criterion, achieving the fraction of the
total sum-rate with the selected antennas requires employing
DPC at the BS. This is an undesirable proposition, due to the high
complexity of implementing DPC. Instead, as proposed in [18],
we evaluate the performance of the antenna selection schemes
using the much simpler zero-forcing beamforming (ZFB) strat-
egy, which, while being sub-optimal relative to DPC, is known to
demonstrate very effective performance in the massive MIMO
regime. In this section, we provide a brief overview of the ZFB
approach, as presented in [50].

We assume w.l.o.g. thatL = 1, as the ZFB design problem de-
couples across subcarriers for a given set of antennas. First, we
consider the case of MR = 1. In a linear transmit beamforming
strategy, each user stream is precoded by a different beamform-
ing vector. Given a subset ofN selected antennasS at the BS, we
define the beamforming matrix W := [w1 , . . . ,wK ] ∈ CK×N ,
power allocation matrix P := diag(p1 , . . . , pK ) and the trans-

mit symbol vector s ∈ CK . It then follows that x = WPs =∑K
k=1 skpkwk and the received signal at each user can be

expressed as

yk = H[S]
k pkskwk +

K∑
j=1,j �=k

H[S]
k pj sjwj + nk ,∀ k ∈ [K]

(41)
In ZFB, the matrix W is chosen to be the right inverse of the
concatenated channel matrix H[S] in order to cancel inter-user
interference. The sum-rate achievable with this scheme is

RZFB(S) = max
P

K∑
k=1

log2(1 + ρpk )

s.t.
K∑
k=1

γ−1
k pk ≤ 1

(42)

where γ−1
k = ‖wk‖22 = ([H[S](H[S])H ]−1)(k, k). The optimal

power allocation in (42) can be computed via waterfilling as
pk = max{μγk − 1/ρ, 0},∀ k ∈ [K], where μ is the solution
of the nonlinear equation

∑K
k=1 max{μγk − 1/ρ, 0} = 1.

For the case of MR > 1, co-ordination amongst the receive
antennas at each user can be utilized to improve the performance
of ZFB via the following post-processing step at each user: de-
noting the thin SVD of H[S ]

k as H[S]
k = UkSkVH

k ,∀ k ∈ [K],
we perform the receive filtering step ỹk = UH

k yk . Thereafter,
the collection of processed vectors {ỹk}Kk=1 can be viewed as the
output of a MIMO BC with KMR single antenna users whose
downlink channels are given by {sk,mr

vHk,mr
}K,MR

k=1,m r =1 , where
vk,mr

is the mth
r column of the matrix Vk . It then follows that

the ZFB scheme described in the previous paragraph can be ap-
plied. Note that this strategy requires the BS to provide feedback
to all users regarding the index of the transmit antennas selected.
This can be avoided by opting to not perform receive antenna
co-ordination and instead treating each antenna as belonging to
a separate user, which allows a straightforward application of
the ZFB technique described in the previous paragraph.

Finally, one may naturally question why the transmit antennas
selected for DPC should perform well for ZFB, and whether it
is more reasonable to base the selection criterion directly upon
ZFB instead. To this, we point out that: i) for the ZFB selection
problem, we are unaware of the existence of any polynomial-
time algorithm which outputs a solution with provable approx-
imation guarantees for all choices of problem parameters, and
hence, one runs the potential risk of selecting a set of antennas
which can exhibit very poor performance for an adversarial in-
stance; and ii) our experiments indicate that the loss in sum-rate
incurred by using ZFB for the antenna subset determined via
submodular maximization is modest. For this reason, we adopt
the two-step submodular selection followed by ZFB approach
in this paper.

APPENDIX B
THE SINGLE USER CASE

In this section, we discuss the case of transmit antenna se-
lection for a point-to-point MIMO channel equipped with MT
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transmit antennas andMR receive antennas. For a given channel
matrix H ∈ CMR ×MT , we consider the following problem of
selecting a subset S of N transmit antennas mentioned in [27]

S∗ = arg max
S∈I

{
f(S) := log2 det

(
IMR

+
ρ

|S|H
[S](H[S])H

)}

(43)
where H[S] ∈ CMR ×N is the MIMO channel sub-matrix ob-
tained by selecting a subset of N columns (indexed by S) from
H and I ⊆ [MT ] corresponds to the independent sets of a uni-
form or partition matroid, corresponding to FF or PC RF switch-
ing, respectively. Note that the transmit power budget ρ is split
equally amongst all the selected antennas. According to the au-
thors of [27], the objective function of (43) is not submodular,
and the following counter-example is provided to establish the
claim. A special case of the MIMO channel with MT = 2 and
MR = 1 is considered, where the channel coefficient between
the ith transmit antenna and the receive antenna is denoted by
hi,∀ i ∈ {1, 2}. Then, we have

f({1}) = log2(1 + ρ|h1 |2), f({2}) = log2(1 + ρ|h2 |2),

f({1, 2}) = log2

(
1 +

ρ

2
(|h1 |2 + |h2 |2)

)
, f({∅}) = 0 (44)

As correctly pointed out in [27], for this example, f(S) is not
guaranteed to be monotone for all possible ρ, |h1 |2 , |h2 |2 . The
authors then go on to claim that this also implies that f(S)
is not submodular. However, monotonicity is not a necessary
condition for a set-function to be submodular. For example,
graph-cut is a well known set-function which is non-monotone,
and yet, submodular [51]. We now establish that this is the case
for the counter-example provided in [27] as well; i.e., f(S)
is actually submodular. For this purpose, from Definition 1 in
Section IV, it suffices to show that

f({1}) + f({2}) ≥ f({1, 2}) + f({∅})
⇒ log2(1 + ρ|h1 |2) + log2(1 + ρ|h2 |2)

≥ log2

(
1 +

ρ

2
(|h1 |2 + |h2 |2)

) (45)

which is equivalent to the condition

log2

(
(1 + ρ|h1 |2)(1 + ρ|h2 |2)

1 + ρ
2 (|h1 |2 + |h2 |2)

)
≥ 0

⇐⇒ 1 + ρ|h1 |2 + ρ|h2 |2 + ρ2 |h1 |2 |h2 |2
1 + ρ

2 (|h1 |2 + |h2 |2) ≥ 1

⇐⇒ 1 +
ρ
2 (|h1 |2 + |h2 |2 + 2ρ|h1 |2 |h2 |2)

1 + ρ
2 (|h1 |2 + |h2 |2) ≥ 1

⇐⇒ |h1 |2 + |h2 |2 + 2ρ|h1 |2 |h2 |2
1 + ρ

2 (|h1 |2 + |h2 |2) ≥ 0

(46)

Simple inspection reveals that the last condition is indeed valid
for all ρ, |h1 |2 , |h2 |2 , and, consequently, f(S) is a submodular
function. Unfortunately, this implies that the counter-example
provided in [27] is incorrect, and thus, cannot be used to establish
that the general case of f(S) is non-submodular.

Instead, a valid counter-example can be constructed for
MT = 3 and MR = 1, as we now show. Consider the case
of ρ = 1 and channel coefficients with powers |h1 |2 = 5,
|h2 |2 = 15 and |h3 |2 = 1. Given the antenna subsets A := {1}
andB := {1, 3} (noteB ⊃ A), we compute the incremental gain
of adding the antenna element v := {2} to both sets. Doing so,
we obtain

Δf (v|A) = f({1, 2})− f({1}) = log2 11− log2 6 = 0.8745

Δf (v|B) = f({1, 2, 3})− f({1, 3}) = log2 8− log2 4 = 1
(47)

Clearly, Δf (v|A) < Δf (v|B), which is a violation of the di-
minishing returns property (Definition 2 in Section IV). As a
result, f(S) is not submodular in general.

Finally, we point out that if the power allocation is
fixed to ρ/MT beforehand (i.e., we have equal power split-
ting amongst all antennas), then the objective function of
(43) is indeed submodular. This can be seen by first ap-
plying Sylvester’s Determinant theorem to obtain f(S) :=
log2 det(I|S| +

ρ
MT

(H[S])HH[S]), which can also be repre-
sented in the form of Equation (12) in Section V.
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